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1. Introduction 
Sedimentation velocity (SV) analytical ultracentrifugation is a highly versatile method that can shed light 
on many aspects of protein interactions, including the number of different classes of complexes, their 
stoichiometry, binding constants from the nanomolar to millimolar range, and structural changes 
associated with binding.  It is frequently applied to determine gross shapes and conformational changes of 
proteins in solution (Calarese et al. 2003; Harding et al. 2003; West et al. 2004; Burgess et al. 2005; 
Connaghan-Jones et al. 2006), characterize protein self-association and oligomeric state (Schuck et al. 
2000; Arthos et al. 2002; Ali et al. 2003; Guan et al. 2004; Solovyova et al. 2004; Burgess et al. 2005; 
Doun et al. 2005; Hsu et al. 2005; Lelj-Garolla and Mauk 2005; Li et al. 2005; Perugini et al. 2005; 
Breuer et al. 2006; Chan et al. 2006; Egan et al. 2006; Lelj-Garolla and Mauk 2006; Yang et al. 2006; 
Jomaa et al. 2007; Patel et al. 2007), as well as hetero-association (West et al. 2004; Gupta et al. 2005; 
Deng et al. 2007; Li et al. 2007) and mixed processes involving single- or multi-step binary systems (Dam 
et al. 2003; Minor et al. 2005; Dam et al. 2006; Deka et al. 2007), and three-component protein systems 
with ternary macromolecular complexes (Houtman et al. 2004; Greive et al. 2005; Houtman et al. 2006).  
Although not a very informative method for determining detailed binding kinetics, it can be readily 
detected whether the kinetics is fast or slow relative to the time-scale of sedimentation (103-104 sec).  It is 
also a highly sensitive tool to characterize the quality of a protein preparation regarding purity and 
stability (Berkowitz 2006; Liu et al. 2006a; Gabrielson et al. 2007; Pekar and Sukumar 2007).   

 In analytical ultracentrifugation, the sedimentation takes place in free solution, in the absence of 
matrices or surfaces, and generally without the need for attaching labels.  The data interpretation is based 
on first principles and can give absolute protein molecular weights and hydrodynamic translational 
frictional coefficients (leading to low resolution shape information of macromolecules in solution).   

 The principle of SV is very simple – the application of a high gravitational field to an initially 
uniform and well-mixed dilute solution of the protein sample, and the real-time imaging and 
mathematical analysis of the evolving concentration gradients arising from the centrifugal force.  The 
resulting sedimentation boundaries show strongly size-dependent separation of protein species.  In 
contrast, for example, to conventional size-exclusion chromatography, the faster migrating protein 
complexes will always remain in a bath of the slower sedimenting species, such that association and 
dissociation events from reversible complexes will continue to take place throughout the experiment, 
maintaining reversible complexes in a way that reflects the chemical equilibria and kinetic properties of 
the interaction.  At the same time, different size complexes can be identified from the movement of their 
respective boundary.  The latter aspects highlight why SV is uniquely suited for the study of non-covalent 
protein interactions.   

 As one of the key techniques in the development of physical biochemistry, analytical 
ultracentrifugation has a very rich history (Schachman 1959; Elzen 1988; Schachman 1989; Schachman 
1992), that is far beyond the scope of the present introduction.  The theoretical tools and the practice of 
SV have dramatically changed during the last decade with the introduction of modern computational 
approaches to the data analysis and the ability to routinely and rapidly solve the underlying equations.  
This has allowed the departure from previous strategies of applying data transforms to partial data sets of 
suitable properties, and the need to design experiments accommodating the analytical constraints, and in 
the process compromising resolution or other detailed information on the macromolecular sample under 
study.  Instead, it is now possible to optimize the experiments to generate the most detailed information, 
and then to directly fit the observed data from the entire sedimentation process with a variety of models 
that explicitly embody different hypothesis about the macromolecular sample.  This approach provides 
much more detailed and reliable information on the sedimenting sample and the protein interactions 
present.  The latter approach of direct boundary modeling is now most widely used and discussed 
exclusively in this Unit.  For current, more general reviews, see (Lebowitz et al. 2002; Balbo and Schuck 
2005; Howlett et al. 2006; Scott and Schuck 2006; Schuck 2007b).   
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 Due to the close relationship with SV it is also highly recommended for the reader to consult the 
Unit on Equilibrium Sedimentation (SE) [Equilibrium Sedimentation Unit in this Series].  SV and SE 
have many aspects in common besides the centrifuge and the capabilities of the detection system, such as 
sample preparation, prediction of protein buoyancy, buffer requirements for the different detection 
systems, range of binding constants that can be characterized, etc.  Therefore, many cross-references will 
be made.  At the same time, there are many differences arising from the observation of the equilibrium 
state versus processes far from it, respectively.  The latter provides much higher resolution and sensitivity, 
but obviously poses a more complicated data analysis problem based on concepts different from those of 
SE.  SV takes less time (typically several hours), generates higher centrifugal fields (typically a few 105 
g) and higher pressures (up to 30 MPa), and requires slightly larger sample amounts (typically 0.1 – 1 
milligram for a series of experiments).  Insight can be gained from contrasting the different concepts from 
SV and SE, and it can be highly advantageous in the experimental study to exploit their complementarity.  
It is advantageous also to apply SV analytical ultracentrifugation in the context of other biophysical 
experiments, as it is an excellent complementary tool for all approaches that measure signals averaged 
over all species in the sample.   

 The present Unit is only a commentary that aims to serve as an introduction to selected topics of the 
state-of-the-art application of SV to the study of protein interactions, such as those frequently encountered 
in immunological systems.  It is impossible to thoroughly discuss the multitude of possible variations of 
experiments and data analysis.  Our goal is for the reader to gain conceptual understanding and 
experimental knowledge of the technique – together with the step-by-step protocol provided as an internet 
resource (Balbo et al. 2007) – sufficient for planning and conducting basic experiments and reliable data 
analysis for standard problems in homogeneous or heterogeneous protein interactions.  A second goal is 
to provide a foundation for further reading on the methods presented, or on more specialized topics when 
faced with more intricate interacting protein systems.  For the data analysis, we focus on our software 
SEDFIT and SEDPHAT, for which further tutorial material and a web-based, searchable help system are 
available at www.analyticalultracentrifugation.com.  Workshops for the application of the practical and 
theoretical tools covered in this Unit are being held regularly in our laboratory at the National Institutes of 
Health, Bethesda, Maryland.   

 

 

2.  Basic Principles: Theory 
In this section, the theoretical background of the most common analytical tools is briefly outlined.  
Although all the computational procedures of the advanced data analysis approaches are encapsulated in 
the software, eliminating the need to follow in detail the mathematical relationships, it is advisable for the 
researcher applying SV to have clarity about the concepts behind the approaches and their specific 
capabilities and strengths as well as limitations.   

 

a)  Single Ideally Sedimenting Protein Species  

The sedimentation process is governed by the gravitational force Fsed = mω2r (with m the protein mass, ω 
the rotor angular velocity, and r the distance from the center of rotation), the buoyancy force Fb = 

mv ρ− ω2r (with v the protein partial-specific volume and ρ the solvent density) opposing the 

sedimentation, and the hydrodynamic friction Ff = - fv = s(kT/D)ω2r (with the frictional coefficient f, the 
linear migration velocity v, sedimentation coefficient s, the Boltzmann constant k, the absolute 
temperature T, and the diffusion coefficient D).  The sedimentation coefficient s is defined as the ratio of 
absolute linear migration velocity v to the applied centrifugal field, s = v/ω2r, and is a molecular constant.  
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The sedimentation coefficient is commonly measured in units of Svedberg, abbreviated S, which is 
related to the SI units by 1 S = 10-13 sec.  From the balance of these three forces, one can derive the 
Svedberg equation 

      
( )1M vs

D RT
ρ−

=      (1) 

(with M denoting the protein molar mass, and R denoting the gas constant) (Svedberg and Pedersen 
1940).  The Svedberg equation is a fundamental relationship between the three directly measurable 
quantities for a single protein species: the sedimentation coefficient (in SV, governing the migration 
velocity of the sedimentation boundary with time), the diffusion coefficient (in SV, determining the 
evolution of the shape of the sedimentation boundary with time), and the molar mass (in SE, determining 
the steepness of the exponential equilibrium gradient after a long time [Equilibrium Sedimentation Unit]).   

 The sedimentation coefficient is directly related to the hydrodynamic translation frictional ratio f/f0, 
and can be interpreted in terms of model shapes and compared to predictions from hydrodynamic theory 
for given structures (see below).  For this purpose, it is frequently useful to transform the experimentally 
measured s-value, sexp, to an equivalent s-value that would have been observed under the standard solvent 
conditions of water at 20°C, s20,w,  
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correcting for contributions arising just from buffer viscosity and density, η and ρ, respectively.  The 
frictional ratio can then be obtained from the ratio of s20,w to the s-value of a smooth, solid sphere ssphere,20w  
of the same molar mass and density.  ssphere,20w  reflects the highest theoretically possible sedimentation 
rate for any particle of the given mass and density:  
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s M
v
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=     (3) 

and the hydrated frictional ratio f/f0 follows as 

0 ,20 20/ /sphere w wf f s s=      (4) 

Typical values for the hydrated frictional ratio range between 1.3 for nearly globular hydrated proteins to 
2.0 for very elongated or glycosylated proteins.  This range of common f/f0-values determines the s-
values one would expect for proteins of given molar mass.  Vice versa, if the molar mass is not known, it 
strictly cannot be determined from the s-value alone, but from the common ranges of f/f0 a corresponding 
range of possible molar mass values can be deduced.  Further, as will be outlined below, weight-average 
values of f/f0 for the protein sample under study can be extracted from the diffusional spread of the 
experimental data using the c(s) and c(M) methods, providing molar mass estimates.  The interpretation of 
the experimentally measured s-values and f/f0-values in terms of low-resolution shape information will be 
discussed below.   

 In a microscopic picture, if it was possible to observe a sedimenting point particle that starts to 
sediment at the meniscus position rm at time t = 0, it would assume a trajectory ( )2( ) expmr t r s tω= .  If 

we identify the ‘position’ of this particle with the mid-point of the sedimentation boundary, a crude 
analysis could proceed by determining s from the slope of a plot log(r(t)/rm) versus t.  However, while this 
approach is useful as a conceptual tool, modern approaches based on the complete, macroscopically 
measured concentration profile and its evolution with time are far superior with regard to the precision, 
detail, and flexibility. 
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 In order to arrive at a model that directly describes the measured data, we require a theoretical 
description of the macroscopic concentration profiles.  Sedimentation and diffusion fluxes determine the 
macromolecular concentration gradients that arise if an initially homogeneous, sector-shaped solution is 
placed in a centrifugal field.  This leads to the Lamm equation for a single, ideally sedimenting species 

     2 21 rD s r
t r r r
χ χ ω χ∂ ∂ ∂⎡ ⎤= −⎢ ⎥∂ ∂ ∂⎣ ⎦

     (5) 

which predicts the time-course χ(r,t) of the macromolecular sedimentation (Lamm 1929).  While 
historically the lack of a closed-form analytical solution of the Lamm equation in the radial geometry of 
Eq. 5 presented a major hurdle in sedimentation analysis, with modern numerical methods it can now be 
solved very efficiently (see, e.g., (Brown and Schuck in press) and the references cited therein).  It 
predicts the experimentally observed concentration profiles for dilute macromolecular solutions with high 
accuracy within the limitations of the optical detection (see below).  The sedimentation patterns strongly 
depend on the macromolecular size and on the rotor speed, and some examples are shown in Figure 1.  In 
extension of Eq. 5, corrections can be made for density gradients arising from water compressibility, or 
sedimenting co-solutes that dynamically change the solution density and viscosity (Schuck 2004a; b).  
Importantly, it can also be extended to account for protein interactions, as will be discussed below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Due to practical limitations in the interference optical detection system, the experimentally 
measured data are the superposition of the signal arising from macromolecular redistribution plus a radial-
dependent offset profile, termed TI (‘time-invariant’) noise as it is constant in time.  This baseline profile 
arises from the radial dependence of imperfections in the optical elements.  Further, a time-dependent, 
radially constant baseline offset, termed RI noise, arises for each scan due to the inability to assign 
absolute fringe shift numbers.  Fortunately, it is possible to directly compute best-fit estimates of both the 
TI and RI signal components as part of the least-squares fit of the raw data (Schuck and Demeler 1999), 
thus fitting  

Figure 1: Characteristic shapes of 
sedimentation profiles for globular species of 
different size at a rotor speed of 50,000 rpm.  
Depicted are the concentration distributions in 
10 min. intervals after start of centrifugation.  It 
can be discerned that with increasing molar 
mass, the boundaries become steeper and the 
displacement with time increases.  Larger size 
species than shown here can be easily 
accommodated, and typically a 1000-fold size 
range can be easily observed in a single 
experiment. 
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( , ) ( , ) ( ) ( )obs TI RIa r t r t b r t≅ χ + + β     (6) 

where aobs(r,t) is the actually measured signal, χ(r,t) the signal arising from macromolecular 
redistribution, and bTI and βRI the systematic noise offsets, respectively.  Both types of offsets are 
routinely subtracted from the raw data (without changing statistical information content), in order to 
enable visual inspection of the experimental macromolecular sedimentation pattern aobs(r,t) – bTI – βRI , 
which otherwise may be obscured (see Figure 12 below).   

However, even with consideration of these unavoidable signal offsets, only in rare cases is it 
possible to fit the single-species Lamm equation Eq. 5 directly to experimental data.  In theory, this would 
provide D, and together with the s-value define the molar mass.  The pitfall is that any impurities, even at 
trace levels, will lead to excess boundary spreading.  When misinterpreting the boundary as if arising 
from a single species, this will cause an overestimate of the diffusion coefficient and, consequently, and 
underestimate of the molar mass.  Therefore, molar mass estimates from single-species Lamm equation 
fits can be considered only lower limits of the true value.  Because it is usually very difficult to discern 
visually, and sometimes not trivial to unravel computationally, possible heterogeneity of the sample, the 
molar mass values should be trusted as good estimates of the true molar mass only if near perfect quality 
of fit is observed over the entire time-course of sedimentation (for fit criteria see below).  Even if the only 
quantity of interest is an average s-value, the direct fitting of single-species Lamm equation is not the 
optimal approach, since it will result in an ill-defined average if impurities are unresolved. 

 

b)  Sedimentation coefficient and molar mass distributions 

 i) Sedimentation coefficient distribution c(s) 

A much more detailed description of the sedimenting macromolecular mixture can be obtained with the 
model of sedimentation coefficient distributions.  Here, many different size particles are considered with a 
continuous range of sedimentation coefficients.  The concentration at each s-value, c(s), is returned from 
the least-squares analysis of the experimental data:  

1( , ) ( ) ( , ( ), , )a r t c s s D s r t ds≅ χ∫     (7) 

where a(r,t) denotes the experimental signal, χ1(s,D,r,t) denotes the normalized Lamm equation solution 
for a single species (Schuck 2000).  The units of c(s) are such that integration over a peak gives the total 
signal of material sedimenting within the peak.  In essence, the c(s) method can be understood intuitively 
as matching the experimental sedimentation data with the best possible combination of sedimentation 
patterns from different-sized species (such as those shown in Figure 1).  This is illustrated in Figure 2.   

 Integration of the c(s) peaks leads to a well-defined and precise weight-average s-value (or signal-
average s-value, respectively) of the species sedimenting within the integration limits (Schuck 2003).  A 
few other important aspects of this approach are discussed in the following.  For more detailed discussion 
of the general use and properties of this distribution, see (Schuck et al. 2002; Dam and Schuck 2004; 
Schuck 2006); software tutorials and example applications are available on the SEDFIT website (Schuck 
2007c).     

 A naïve determination of c(s) via Eq. 7 would be an ill-posed problem, i.e. many different solutions 
may fit the data similarly well, such that experimental noise may amplify and influence major features of 
the distribution (Provencher 1979).  Therefore, it is essential that regularization, such as maximum 
entropy, be used in the computation.  It provides as an output not the absolute best-fit solution, which may 
exhibit peaks not statistically reliably warranted by the data, but instead the simplest c(s) distribution that 
that fits the data statistically indistinguishably well compared to the best fit.  To this end, the user of 
SEDFIT is required to supply a pre-determined confidence level (P-value, usually set at 0.68) to 
determine the extent of regularization.  Regularization is an implementation of the principle of Occam’s 



 7

razor:  it ensures that we interpret only those features of the distribution that are essential to explain the 
data, and are not misled by peaks arising from noise amplification.  How to extend this method to enhance 
sensitivity and resolution is discussed further below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 A second, conceptually very important aspect of the c(s) distribution is that it reduces the two 
parameters s and D, which jointly determine the sedimentation behavior of an ideal species, to a 
distribution of only one parameter, s.  This reduction can be achieved in different ways depending on the 
system under study, but most commonly it is realized by adopting a scaling law between s and D, which 
can be conveniently expressed via a weight-average frictional ratio (f/f0)w :  

( )( ) ( )( )3 2 1 21 2
0

2( ) 1
18 wD s kT s f f v v

−−= η − ρ
π

   (8) 

(Schuck et al. 2002).  (f/f0)w is a scaling parameter that can be derived from the experimental data by non-
linear regression, and is usually well-defined.  Because (f/f0)w only determines (and extracts information 
from) the diffusional spread, the precise choice of (f/f0)w has little influence on the peak position and area 
in the c(s) distribution, but mostly governs the resolution.  Due to the relatively narrow range of f/f0 values 
for folded proteins, it is usually a good choice for the study of protein mixtures.   

 

 ii) Variations of c(s) tailored to specific systems or data  

Other models for D(s) are available that are more specifically tailored to certain systems.  This includes a 
bimodal c(s) model, where two separate (f/f0)w values may be determined from data that exhibit visually 
separating sedimentation boundaries.  This can be appropriate for mixtures of chemically dissimilar 
species, such as proteins and nucleic acids, or proteins and carbohydrates, as these species frequently 

Figure 2:  Experimental data and the corresponding c(s) 
sedimentation coefficient distribution.  Top panel: 
Experimental data, showing the observed concentration 
profiles as a function of time.  Systematic time-invariant 
and radial-invariant noise contributions calculated as part 
of the c(s) analysis were removed from the data for 
clarity.  As indicated by the arrows, two main boundaries 
can be visually discerned, as well as relatively broadly 
distributed increasing signals at radii higher than the main 
boundary (the ‘solution plateau’).  The main boundaries 
correspond to two protein components that were mixed in 
this sample.  Middle Panel: c(s) sedimentation coefficient 
distribution showing two distinct sharp peaks 
corresponding to the two main boundary components 
(from the individual monomeric protein species), and a 
relatively broad distribution of larger species formed by 
homo- and hetero-oligomers.  Lower Panels:  Residuals of 
the c(s) fit.  The upper graphics is a bitmap representation, 
where the residuals of each scan at each radial point are 
depicted as lines of pixels with varying grayscale.  The 
lower graph is an overlay of all data points as a function 
of radius.  The bitmap representation reveals a slight 
diagonal feature arising from imperfections in the fit of 
the slower sedimenting species (in this case marginally 
tolerable; see the section 2.f of this Unit on Fit Criteria).   
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separate during sedimentation and exhibit different frictional ratios.  (A related, but more general model is 
the hybrid discrete/continuous model in SEDPHAT, where the distribution can be designed as a 
combination of separate continuous segments and discrete species, see below.)  Another specialized 
model is that for a protein of known molar mass undergoing conformational change.  Further, for the 
study of filamenting proteins a model with the hydrodynamic scale-relationship of worm-like chains is 
available (Binger et al. submitted), as well as the possibility for an arbitrarily user-defined relationship 
between s and M.  These variations and others become useful if particular knowledge on the interacting 
components and their behavior is available.  But even in the absence of such refinements, for the study of 
protein mixtures and their interactions the standard c(s) method has proven to be very successful (Schuck 
2007a).  

 

 iii) Molar mass distribution c(M) 

Once the relationship D(s) has been established, for example via the quantity (f/f0)w, the Svedberg 
equation Eq. 1 can be used to scale c(s) into a molar mass distribution c(M).  (For convenience, the 
keyboard shortcut control-M in SEDFIT will display the molar mass estimates for each peak.)  However, 
care must be taken to interpret this value: It is susceptible to the precise value of f/f0 for each species, and 
only if the distribution exhibits a single major peak, and when the correct values for the protein partial 
specific volume v  and the solvent density ρ and viscosity η under the experimental conditions are used, 
it will be a good estimate.  Typically, the precision of c(M) in this case is better than ±10%.  This is 
usually sufficient to identify the protein oligomeric state in solution.  This was illustrated, for example, in 
the study of the oligomeric state of a natural killer cell receptor fragment in (Dam and Schuck 2004).  
c(M) can be particularly useful if the protein sample exhibits microheterogeneity, such as from 
glycosylation or from conformational mixtures (Kornblatt and Schuck 2005).  If, on the other hand, 
microheterogeneity is absent, a powerful approach to measure species molar masses is the hybrid 
discrete/continuous distribution in SEDPHAT, where the c(s) peaks are replaced with discrete single-
species Lamm equation solutions with independently adjustable molar mass values (Boukari et al. 2004; 
Greive et al. 2005; Chou et al. 2006). 

 

 iv) Size-and-shape distributions 

A generalization of the sedimentation coefficient distribution c(s) is the two-dimensional size-and-shape 
distribution c(s,M) (Brown and Schuck 2006).  Here, no relationship D(s) is required, and both parameters 
can freely and independently vary (Figure 3):   

1( , ) ( , ) ( , , , )a r t c s M s M r t dsdM≅ χ∫     (9) 

This distribution can be expressed in different coordinates, since the parameters s and M allow the 
transformation into a distribution of Stokes radii RS, diffusion coefficients D, and frictional ratios f /f0.  
Such a distribution is useful, for example, when dealing with chemically dissimilar species or mixtures of 
proteins that are known to exhibit a significant, possibly continuous variation in frictional ratio.  Because 
the information content of the SV data may not be sufficient to define features in both dimensions well, 
the distribution can be condensed back to a sedimentation coefficient distribution free of any scale-
relationship, termed ‘general c(s,*)’ 

( ,*) ( , )c s c s M dM= ∫       (10) 

which gives the population of species sedimenting at a given s-value irrespective of their frictional 
coefficients (or molar masses).  Equivalent integrations along other coordinates can give similarly general 
molar mass distributions, Stokes radii distributions, etc.  General c(s,*) should be used if none of the 
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available models for D(s) seems suitable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 v) Multi-signal sedimentation coefficient distribution ck(s) 

The multi-signal ck(s),  can be highly useful in practice when studying interactions of proteins with 
significantly different spectral properties (Balbo et al. 2005).  In this method, data are acquired from the 
same cell at multiple signals (e.g., wavelengths) aλ(r,t), and both diffusion and the spectral contributions 
are simultaneously deconvoluted as  

max

min

1 ,
1

( , ) ( ) ( , , , )
sK

k k k w
k s

a r t c s s F r t dsλ λε χ
=

≅ ∑ ∫     (11) 

(with εkλ the extinction coefficient of component k at wavelength λ, predetermined in a separate SV 
experiment, and Fk,w the weight-average frictional coefficient).  This results in a high-resolution 
sedimentation coefficient distribution for each component, which gives information how much of each 
protein is sedimenting in a certain s-value peak.  This directly reports on the stoichiometry of the 
complexes formed.  It has the virtues of excluding effects of impurities from contamination and 
degradation products from biasing the estimate of complex stoichiometry, and of not depending on 
absolute knowledge of the concentrations of the active species.  As will be discussed in more detail 
below, for reversible complex formation it does require either the complex to be kinetically stable on the 
time-scale of sedimentation (koff < 0.001/sec), or concentrations higher than KD to be used for at least one 
of the components in order to populate and hydrodynamically separate the complex. 

The spectral requirements can be met by attaching extrinsic chromophoric labels.  However, in 
many cases intrinsic differences between proteins in their content of aromatic amino acids are generating 
sufficiently characteristic ratios of 280 nm absorbance vs. interference signal.  Clearly, protein 
interactions with other polymers or compounds that do not absorb strongly in the UV (as carbohydrates 

Figure 3:  Analysis of experimental sedimentation 
velocity data from the study of the oligomeric state of a 
glycosylated NK receptor fragment (Dam and Schuck 
2004; Brown and Schuck 2006).  (A) Representative 
subset of the raw data after elimination of systematic 
noise contributions.  The inset shows a residuals bitmap 
of the size-and-shape c(s,M) analysis.  A naïve single 
species analysis (Figure 13) would lead to a molar mass 
close to the monomer ~ 60 kDa, an estimate qualitatively 
in error due to the presence of impurities.  (B) Size-and-
shape distribution, transformed into coordinates of 
sedimentation coefficient and molar mass.  The color 
temperature of the contour lines indicates the population 
of species.  Like in c(s), the peak-width in c(s,M) contains 
contributions both from regularization (reflecting limited 
resolution given the signal-to-noise ratio of the data), and 
from true heterogeneity.  (C): Reduction of the c(s,M) 
distribution to a pure sedimentation coefficient 
distribution, general c(s,*).  This is equivalent to a 
conventional c(s) analysis but without any constraints to a 
common  average frictional ratio of all species.  The inset 
shows a pure molar mass distribution, c(M,*), also 
derived by integration of c(s,M) in a direction orthogonal 
to c(s,*).  
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and many detergents), or that dominate the UV absorbance (such as nucleic acids) also provide natural 
applications for multi-signal analyses.   

While this multi-signal ck(s) method is a convenient approach, for example, in cases where the s-
value or molar mass of a complex alone would not provide unambiguous stoichiometry information, this 
approach is uniquely suited to unravel the number of different classes of complexes and their 
stoichiometry for extended, multi-step assembly processes of two or three different protein components 
(Figure 4).  Examples for the application of ck(s) in the literature can be found in (Minor et al. 2005; 
Houtman et al. 2006; Deka et al. 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 vi) Incorporation of prior knowledge in regularization 

The sensitivity and resolution of the distributions described above can be enhanced significantly by using 
a Bayesian extension of the regularization principle described above to incorporate knowledge that is 
available a priori (Brown et al. 2007).  The Bayesian approach is a very powerful tool to probe alternative 
explanations of the data, in the light of certain prior hypotheses (Sivia 1996).   

 As described above, in the standard regularization we extract the essential pieces of information of 
the experiment by calculating the ‘simplest’ distribution that can fit the data statistically indistinguishably 
well compared to the overall best fit (avoiding the susceptibility of the latter to artificial peaks from noise 
amplification in the ill-conditioned analysis).  The conventional regularization in c(s) embodies the notion 
that the ideal ‘simplest’ distribution (which would be returned in the absence of data) be flat and 
featureless, and only with increasing signal/noise ratio of the data will peaks emerge at specific locations 
with increasing sharpness.  The Bayesian extension implemented in SEDFIT and SEDPHAT, termed 
c(P)(s), allows the researcher to redefine the ‘simplest’ distribution to be one that conforms completely to 
the prior expectation.  With increasing experimental information will the distribution deviate from the 
prior expectation, but only to the extent necessary, again, to fit the data statistically indistinguishably well 
(compared to both the instable best-fit, and to the solution from conventional regularization).   

 It is important to note that the distribution c(P)(s) will generally not simply reflect the prior 
expectation, as would be the case for ordinary constraints, but show in more detail which additional 
unexpected features are necessary to explain the data.  An specific example of prior knowledge, termed 
c(Pδ)(s), is that the sample may not be pure, but that all species are intrinsically mono-disperse (due to the 
discrete nature of protein masses) (Figure 5).  A different example for interacting heterogeneous systems 
is the introduction of the s-values of the individual species (from a separate experiments in the same run) 
(Figure 6).  For more details, see (Brown et al. 2007).  

Figure 4:  Example of the multi-signal ck(s) analysis 
of a triple protein mixture of a viral glycoprotein 
(green), its cognate receptor (blue), and a 
heterogeneous antigen-recognition receptor fragment 
(red).  The content of each protein component in the 
different s-ranges is obtained from the global 
analysis of sedimentation data acquired with the 
interference optics and with the absorbance system at 
two different wavelengths (data not shown), using 
two chromophorically labeled and one unlabeled 
protein.  Solid lines show the ck(s) analysis of the 
triple mixture.  The analogous distributions of each 
protein alone are shown as dotted lines.  The 
formation of coexisting binary complexes (~5 S, ~7 
S) and a ternary complex with 1:1:1 stoichiometry (~ 
8.5 S) can be discerned.    
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Figure 5.  Prior knowledge in the analysis of non-interacting 
macromolecules.  Top: SV data from a BSA sample. Middle:  The BSA 
data are analyzed first with conventional c(s) (dotted line).  Generally, 
the peak width in c(s) can be a result from either a true polydispersity of 
the protein (e.g., strong heterogeneity in glycosylation, in conformation, 
primary sequence, etc.), or from the standard regularization favoring 
broader peaks for data with low signal/noise ratio.  As a second stage, 
the c(Pδ)(s) distribution is calculated (solid line; SEDFIT keyboard 
shortcut control-X).  Here, the prior knowledge is used that each species 
that occurs would have a discrete molar mass and s-value.  This 
knowledge may be derived from general expectation of the discrete 
nature of biological macromolecules, or be confirmed by mass 
spectroscopy.  Thus, all peaks from the first c(s) distribution transformed 
into δ-peaks and used as Bayesian prior expectation for calculating the 
c(Pδ)(s) distribution.  As expected, the same peaks occur in c(s) as in 
c(Pδ)(s), with the latter being significantly sharper.  Bottom:  The same 
procedure applied to the data from the glycosylated NK receptor 
fragment shown in Figure 3.  Here, it should be noted that in c(Pδ)(s) two 
new smaller peaks at 4 S and 5.5 S emerge.  Their presence means that 
they are essential part of a model containing a sharp main 4.7 S peak.  
The smaller peaks could be a compensation for an unaccounted true 
heterogeneity within the main peak, or reflect true sedimenting species 
previously unresolved.  Both c(s) and c(Pδ)(s) have the same high quality 
of fit and are indistinguishable based on the experimental SV data alone.  
The possibility of their distinction resides only in considering the 
confidence in the prior knowledge.  In the present case, strong 
heterogeneity of the glycosylated receptor, as detected by mass 
spectroscopy, would make the expectation of a sharp main peak not a 
safe assumption.  This example highlights how the Bayesian analysis can 
be used to actively explore the flexibility of the data interpretation, not 
by force-fitting models with different constraints, but more subtly by 
allowing the data to compensate, if necessary, for the bias introduced via 
the prior expectation, such that highly detailed alternative pictures 
emerges, for which the same quality of fit is ensured.  For a detailed 
discussion, see (Brown et al. 2007).    
 
Figure 6.  Prior knowledge in the analysis of interacting macromolecules 
forming dynamically stabilized complexes.  (A) Interference optical 
sedimentation velocity data of a mixture of peptides derived from the 
adaptor protein SLP-76 (11.7 kDa) and PLC-γ (7.4 kDa) which form 
complexes with 1:1 stoichiometry (Balbo et al. 2005; Brown et al. 2007).  
(B) The conventional sedimentation coefficient distribution c(s) is shown 
as black solid line.  Using the prior knowledge of the s-values of the 
individual species (~0.6 S and ~0.75 S, obtained from experiments 
conducted in different cells of the same run), the resulting distribution 
c(P)(s) is shown as blue line, exhibiting a well-defined peak for the 
complex formed.  In a third step, it is hypothetically assumed that the 
complex peak arises from one single species, expressed as the prior 
expectation that the complex peak should have an unchanged signal-
average s-value, but be sharp.  The resulting distribution c(Pδ)(s) is shown 
as red dotted line.  It can be discerned that with this prior knowledge, an 
additional peak at ~ 1.25 S would be necessary to explain the data.   As a 
consequence, the data suggest that there is not a single mono-disperse, 
stably sedimenting complex species, contrary to expectations.  Since 
both the blue and the red distributions are of indistinguishable quality of 
fit, it is not possible to decide from the data alone whether the blue peak 
is a better reflection of the true situation of a sedimentation coefficient 
distribution arising, for example, from dynamic instability of the 
complex on the time-scale of sedimentation, or from conformational 
heterogeneity, or if the red distribution is reflecting a truly existing 
stable, mono-disperse complex population but in the presence of slight 
further aggregation.  By using the hypothetical prior expectation one can 
probe the set of possible, alternative explanations of the data.   



 12

b)  Interacting systems 

Mixtures of interacting proteins sediment characteristically different from non-interacting mixtures, in a 
way that depends on the life-time of the complexes relative to the time-scale of the SV experiment.  Even 
though the data set from a single sample will comprise information from a range of sample concentrations 
between zero and the loading concentration, the features characteristic for interactions are best recognized 
and best quantified when running mixtures at several different loading concentrations and/or molar ratios 
in order to explore the entire binding isotherm by shifting the relative population of free and complexes.   

 

 i) Lamm equation modeling and c(s) analysis 

From a strictly theoretical perspective the most attractive approach to characterize protein interactions in 
SV would be to globally fit the complete sedimentation profiles obtained at all concentrations directly 
with numerical solutions of the coupled Lamm equations of the interacting system   

   21i i
i i i ir s r D q

t r r r
⎡ ⎤∂χ ∂χ∂ ⎛ ⎞+ ω χ − =⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎣ ⎦

    (12) 

where qi denote s the time-dependent local reaction flux.  The precise form of Eq. 12 and, in particular, its 
reaction fluxes requires specification of the number and stoichiometry of species.  It can be implemented 
either for instantaneous equilibria following mass action law, or considering finite reaction kinetics 
(Urbanke et al. 1980; Schuck 2003; Stafford and Sherwood 2004; Dam et al. 2005).  In the kinetic case, 
for example, for a simple bimolecular reaction to form a 1:1 complex, qi becomes 1 2 3q q q q= = − = −  
with 1 2 3on offq k k= χ χ − χ .  Eq. 12 is available in SEDPHAT for global fitting of experimental SV 

profiles for a number of binary and ternary interaction models.  

However, several practical reasons make this approach more difficult than it may at first appear: 
(i) It requires prior knowledge on the number and stoichiometry of the complexes formed, which is 
frequently far from trivial, and should be assessed prior to attempting Lamm equation modeling, for 
example, using c(s) or multi-signal ck(s) (see below).  (ii) Different chemical off-rate constants influence 
the sedimentation patterns of reacting systems significantly only in a relatively narrow range between ~ 
10-4/sec – 10-3/sec, making this a parameter poorly determined by the data.  This problem is exacerbated 
for small proteins that exhibit larger diffusional spreading of the boundaries.  (iii)  Similar to the 
drawbacks of fitting single-species Lamm equations to putatively pure protein samples, the results of 
modeling with Eq. 12 will be very susceptible to bias from unrecognized contaminating species.  (iv) It 
has been pointed out that microheterogeneity either of the binding properties (Cann 1982), or arising from 
conformational mixtures (Werner and Schachman 1989), or from heterogeneous glycosylation will lead to 
excess boundary spread, which is difficult to incorporate into models of the type Eq. 12 (Dam et al. 2005).   

Modeling data directly with explicit Lamm equations for reacting systems (Eq. 12) was 
successfully applied in many studies (Lewis et al. 2002; Ali et al. 2003; Dam et al. 2005; Hsu et al. 2005; 
Chan et al. 2006; Connaghan-Jones et al. 2006; Schmeisser et al. submitted).  However, this approach is 
typically applied after a more robust quantitative analysis step that precedes it and helps to initialize its 
parameters.   

As a first step in the characterization of protein interactions, we recommend the application of the 
c(s) analysis to the data obtained at a range of loading concentrations.  This allows one to diagnose the 
behavior of the interacting system.  Complex formation is indicated by the appearance of new peaks 
and/or the concentration-dependent shift of the peak positions, as will be described in more detail below.  
From the comparison of the resulting distributions with the distribution from the samples studied 
separately, and from comparison among the different mixtures, a number of conclusions can be drawn.  
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Compared to the Lamm equation modeling with reaction terms, the quantitative analysis of sedimentation 
coefficient distributions for deriving the binding constants is much less susceptible to sample impurities 
and aggregates.  The c(s) approach to interactions has the drawback of not delivering more than 
qualitative information on kinetic rate constants, but the advantage of being robust against 
microheterogeneity, impurities and degradation products from proteolytic activity or aggregation.   

 

 ii) Sedimentation coefficient distribution analysis of interacting systems with slow kinetics 

Identifying interactions with slow chemical conversion (koff < 10-3 – 10-4/sec) is straightforward (Figure 
7).  In this case, all sedimenting species are sufficiently stable to hydrodynamically separate, and the c(s) 
peaks directly reflect the sedimenting species.  An important consequence of slow chemical conversion is 
that the peak positions do not change with loading concentration.  In diagnosing this case, allowance must 
be made for the fact that the data acquired at lower concentrations will have lower signal-to-noise ratio, 
which can cause peaks to merge in c(s).  What changes with concentration are the relative peak areas, 
which represent the shifting populations as predicted by mass action law.   

Two pieces of information can be extracted from the c(s) curves:  1) The area under each peak 
should be determined by integration, and the isotherms of their concentration-dependent shift in 
population be modeled directly with mass action law.  For example, for a bimolecular reaction A+B  
AB, the isotherms of the signals from the individual species (aA, aB, and aAB, respectively) take the form 

( )
( )
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( ) ( ) ( )22
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K
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= ε −

= ε + ε

⎡ ⎤= + + − + + + −⎢ ⎥⎣ ⎦

 (13) 

(with extinction coefficients εA and εB and the total loading concentrations cAtot and cBtot for components A 
and B, respectively, and the association constant K)  

2) The shift in relative population causes an increase in the weight-average s-value as a function 
of loading concentration, sw(c).  The quantity sw can be quantified for each distribution by integration of 
the c(s) distribution over all peaks (but excluding peaks from contaminating species).  There is a deep 
connection between sw and mass balance considerations (Schachman 1959), as judged by the change in 
area under the sedimentation boundaries  

max max

min min

2 2
1 ( , ) ( ) ( )

p

m

r s s

w
p p r s s

s c r t rdr c s sds c s ds
r c

= − =
ω ∫ ∫ ∫     (14) 

(with rp representing an arbitrarily chosen radius in the plateau region, with the plateau concentration 
cp(rp), and with the meniscus position rm).  sw can be calculated by integration of c(s) or any other 
boundary model that faithfully represents the boundary area, irrespective of the details of the model itself 
(Schuck 2003).  In the above example of Eq. 13, the isotherm of weight-average (or, more precisely, 
signal-average) s-value versus sample composition is 

 ( , ) A A B B AB AB
w Atot Btot

A B AB

a s a s a ss c c
a a a

+ +
=

+ +
       (15) 
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Generally, an increase of sw(c) at higher concentrations is a highly sensitive and powerful proof for the 
existence of an interaction – irrespective of the reaction scheme, affinity, or kinetics – and permits 
quantitation of even very weak interactions (Patel et al. 2007).   

For convenience, the types of isotherms Eq. 13 and Eq. 15 are implemented in SEDPHAT for a 
variety of different interaction models, and for global fitting of multiple data sets.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 ii) Sedimentation coefficient distribution analysis of interacting systems with fast kinetics 

For systems with rapidly interconverting free and complex species (koff > 10-3/sec), a different pattern 
appears with peaks shifting in a concentration-dependent fashion:  The interacting mixture exhibits a 
coupled sedimentation of free species and complex, with an s-value that reflects the fractional time in 
which, on average, the molecules spend in the complex state (sedimenting fast), as opposed to the 
dissociated state (sedimenting slow).  This is termed the ‘reaction boundary’.  The precise boundary shape 
and position is complicated by the fact that within the sedimentation boundary the concentrations of all 
components change, such that a certain dispersion of the s-values naturally arises.  As shown elsewhere 
(Dam et al. 2005), there is a deeper connection between the sedimentation coefficient distribution c(s) and 
reaction boundaries, which can be understood on the basis of the constant bath approximation of the 
Lamm equation for reacting systems, which predicts the reacting boundary to diffuse, in a first order 
approximation, with a single intermediate diffusion coefficient (Krauss et al. 1975; Urbanke et al. 2005).  
Reaction boundaries can be described in good approximation by c(s) (Dam and Schuck 2005; Brown et 
al. 2007), with the limitation that residually unaccounted coupling of the diffusion and reaction fluxes 
tends to produce underestimates for the weight-average frictional ratio f/f0 (particularly at concentrations 
~ KD).  Thus, the quality of c(M) estimates from reaction boundaries is reduced (with M generally being 
underestimates), but, for concentrations >> KD may still allow the gross estimate of the average molar 
masses, frequently revealing the oligomeric state.  However, the strength of the application of c(s) to 
reacting systems is that it can still deconvolute diffusional broadening and it represents well the 

Figure 7:  Examples of c(s) distributions for slowly 
interacting systems.  Shown are (scaled) distributions from a 
simulated self-associating system of a 50 kDa protein 
sedimenting at 4S forming a dimer with 6 S (top) and a 
heterogeneous association of a 50 kDa (4 S) and a 100 kDa 
protein (6 S) forming a  1:1 complex with 8 S (bottom), both 
sedimenting at 50,000 rpm.  For both systems, the binding 
constant KD was assumed to be 1 μM, koff = 5×10-5/sec, and 
protein concentrations were 0.1 (light blue), 0.3 (dark blue), 
1 (black), 3 (dark red), and 10 μM (red), with equimolar 
concentrations for the hetero-association.  For slow 
reactions, the relative peak areas change but the peak 
positions remain virtually constant.  The peaks directly 
represent the number of sedimenting species.  However, the 
finite reaction rates will make the peak s-values slightly 
different form those of the underlying species.  At low 
protein concentration, the lower signal-to-noise ratio of the 
data will cause the c(s) peaks to be of low resolution and 
even merge.  (This may be improved in a second stage using 
c(Pδ)(s).)      
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underlying sedimentation coefficient distribution.  This is highly useful for the quantitative 
thermodynamic analysis of interactions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For rapidly interacting systems, it is indispensable that they be studied at a range of 
concentrations.  The major characteristics of c(s) curves from interacting systems is the change of peak 
positions with sample concentration and composition.  Examples for rapid self-associations are shown in 
Figure 8.  For the quantitative analysis of self-associations, we extract only the sw(c), and fit them to 
expressions analogous to Eq. 15.  In the analysis, care should be taken to examine samples at a wide 
concentration range (desirable are 2 orders of magnitude), in order to allow the separate characterization 
of the monomer s-value and oligomer s-value, as well as the binding constant.  It should be noted that 
very low concentrations giving signals on the order of the noise of data acquisition can be sufficient in 
c(s) to determine sw.  If only a narrow concentration range is available, these values are highly correlated 
(Schuck 2003).  Alternatively, in some cases it is possible to constrain the s-values of the monomer or the 
oligomer to those measured independently with protein variants that show much stronger or much weaker 
self-association, respectively, or which show slower self-association kinetics under some conditions 
(Buisson et al. 2001).  Further possibilities are the theoretical prediction (see below) of the monomer or 
oligomer s-value from known crystal structures (Dam et al. 2003), if available, or the assumption of 
hydrodynamic scaling laws (Frigon and Timasheff 1975).  

Heterogeneous interactions with rapid interconversion of species can show more complex 
patterns.  They are easier to study due to the fact that two components A and B (assuming bimolecular 
reactions) can be varied separately, such that characteristic patterns of sedimentation boundaries appear 
(Figure 9).  Besides the reaction boundary, for bi-molecular heterogeneous associations a second peak is 
present at lower s-values, coincident with the s-value of either one of the free components.  It is caused by 
the trailing part of the boundary where only one single component exists.  Usually, but not always, this is 
the slower-sedimenting of the two components.  Sometimes, when the molar ratio of the larger to the 
smaller species is increased, the species that constitutes this ‘undisturbed’ boundary switches from A to B 
within a concentration series.  Also, while for self-associations the s-value of the reaction boundary 
monotonically increases with concentration, this is not necessarily the case for hetero-associations, 

Figure 8:  Examples of c(s) distributions for rapidly interacting 
self-association.  Shown are (scaled) distributions from a 
simulated self-associating system of a 50 kDa protein 
sedimenting at 4S forming a dimer with 6 S (top), and the same 
monomer forming a trimer at 8 S, respectively.  c(s) curves are 
calculated for protein concentrations of 0.1 (light blue), 0.3 (dark 
blue), 1 (violet), 3 (orange), and 10 μM (red), at association 
constants of 106/M for the monomer-dimer and 1012/M for the 
monomer-trimer system, respectively (both having an effective 
KD of 1 μM).  For both systems, the peak position changes 
strongly with concentration in the vicinity of KD.  Characteristic 
for the higher-order self-associations (n > 2) is that the s-range is 
more drawn out, and that a distinct monomeric peak can be 
discerned at all concentrations.  This is due to the higher 
difference of the s-values for oligomers with n > 2, causing 
stronger separation and a distinctly slower sedimenting trailing 
part of the sedimentation boundary at concentrations < ~0.3 KD, 
which is dominated by the monomeric form.  It should be noted 
that even at concentrations 10fold KD the peak position of the 
main peak does poorly reflect the s-value of the highest oligomer. 
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dependent on the relative concentrations of A and B in a concentration series.  (However, sw always 
increases with concentrations for interacting systems.) See Figure 9 for examples.   

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

 

 

 

 

The precise s-value and relative areas of the different peaks of the resulting sedimentation 
coefficient distribution may not appear intuitive at first, but one can rely on the detailed description of the 
reacting system by Gilbert-Jenkins theory of coupled migration in the presence of rapid chemical 
reactions (Gilbert and Jenkins 1956).  The latter is beyond the scope of the current introduction, but in 
essence predicts the velocity distribution of the reaction boundary by solving the problem of how much of 
each species is required for a co-sedimenting reacting system to assume a given velocity v (in the 
approximation of a linear geometry and no diffusion)  

( ) ( ) ( ) CA B
a b c

cc c
v v v v v v

v v v
∂∂ ∂

− = − = − −
∂ ∂ ∂

    (16) 

with the constraints of mass conservation and mass action law for the given loading concentrations 
(Gilbert and Gilbert 1978).  Assuming sedimentation of an infinitesimal amount of such a system, the 
remaining total concentrations are slightly depleted in the trailing boundary portion, leading to a different 
composition of the system sedimenting with a slightly lower velocity, and so on, ultimately giving rise to 
a sedimentation velocity distribution for each species.  From this, the shape and amplitude of the reaction 
boundary as well as the amplitude and s-value of the undisturbed boundary follows.  For a more detailed 
discussion, see (Gilbert and Jenkins 1959; Fujita 1975; Dam and Schuck 2005).   

Figure 9:  Examples of c(s) distributions for rapidly interacting 
hetero-associating systems A + B AB.  Shown are (scaled) 
distributions from a simulated interaction of a 100 kDa protein ‘A’ 
sedimenting at 7 S and a 200 kDa protein ‘B’ sedimenting at 10 S 
forming a complex with 13 S.  c(s) curves are calculated for different 
experimental configurations, mimicking either equimolar 
concentrations (top), the titration of constant B with increasing A 
(middle), and the titration of constant A with increasing B (bottom), 
with protein concentrations of 0.1-fold KD (light blue), 0.3-fold KD 
(dark blue), KD (violet), 3-fold KD (orange), and 10 -fold KD (red).  In 
any configuration, the peak position of the reaction boundary changes 
strongly with concentration.  For the equimolar case and for the case 
of variable A at constant B, the undisturbed boundary is at the s-value 
of the slower sedimenting A, and the s-value of the reaction boundary 
is continuously increasing with concentration.  This is not the case, 
however, for the titration of constant concentration of the smaller 
species A with increasing concentrations of the larger species B 
(bottom):  here, although initially all of B is in the reaction boundary, 
at a molar excess of B greater than ~3-fold, the larger species B 
constitutes the undisturbed boundary and the peak at the s-value of the 
smaller A disappears.  During this switchover, the concentration 
dependence of the s-value of the reaction boundary changes direction: 
being initially halfway between the s-value of B and the complex, 
increasing concentrations of B first draw it towards that of B, and then 
closer to the s-value of the complex.  The precise s-values and the 
areas under the peaks can be modeled with predictions from Gilbert-
Jenkins theory, as implemented in SEDPHAT.  An example is shown 
in Figure 10.   
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For the data analysis of fast heterogeneous associations of two proteins, three pieces of 
information can be extracted:  1) The area under each peak as a function of loading concentrations 
constitutes an isotherm that can be fit with expressions from Gilbert-Jenkins theory for the relative 
magnitudes of the ‘undisturbed’ and the ‘reaction’ boundary.  2) The concentration-dependent s-value of 
the ‘reaction’ boundary forms an isotherm that can also be fit with predictions of Gilbert-Jenkins theory.  
This is highly useful to predict the s-value of the complex species.  3) The concentration-dependence of 
the weight-average s-value, as determined by integration over all peaks (except known impurities or 
aggregates outside the range of s-values of the interacting systems).  Analogously to the treatment of 
slowly interacting systems, these isotherms are subjected to global fitting in SEDPHAT.  An example is 
shown in Figure 10.   

It is worthwhile recapitulating where in these analyses the information is taken from.  As 
described above, the analysis of the weight-average sedimentation coefficient sw(c) is based on mass 
balance considerations – essentially using the information on the depletion of total material due to 
sedimentation with time.  The reason for the robustness of this information is that it resides in the area 
under the concentration profiles and is little affected by reaction kinetics and not at all by diffusion 
(Schuck 2003).  Going further, the analyses of the individual peak areas, as well as the analysis of the s-
value of the reaction boundary, takes advantage of the underlying multi-modal nature of the boundaries 
and their associated sedimentation coefficients.  In many cases, the bimodal nature of sedimentation 
patterns can even be clearly visibly discerned in the raw data, although in some cases it becomes apparent 
only after diffusional deconvolution in c(s).  The s-values and the relative amplitudes of these boundary 
components also are robust features of the data.  What is left out of this analysis is the detailed 
interpretation of the boundary spread, which is most influenced by microheterogeneity and impurities.  
However, qualitative information about the reaction rate constants is obtained by the distinction between 
the patterns of ‘slow’ and ‘fast’ reactions.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10:  Analysis of experimental data from the 
sedimentation of a natural killer cell receptor Ly49C (31 
kDa, 2.66 S) interacting with a MHC molecules H-2Kb (45 
kDa, 3.56 S) sedimenting at 50,000 rpm (Dam et al. 2003).  
From the c(s) analysis, a bimodal boundary shape was 
detected characteristic for rapidly reacting two-component 
heter-associations.  Extracted from the data were the 
concentration-dependence of the overall weight-average s-
value sw(c) (Panel A, gray squares), the s-value of the 
reaction boundary sfast(c) (Panel A, black circles), as well as 
the amplitudes of the undisturbed and the reaction 
boundaries (Panel B, solid and empty circles, respectively).  
The isotherms were fitted globally with SEDPHAT, based 
on theoretical expressions of a rapid interaction with two 
equivalent non-interacting sites with KD = 1.7 μM, indicated 
by the solid lines, with s-values of 4.96 S and 6.11 S for the 
1:1 and 2:1 complexes.  For a detailed description of this 
system and data analysis, see (Dam et al. 2003; Dam et al. 
2005; Dam et al. 2006).   
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As introduced above, the multi-signal sedimentation coefficient distribution ck(s) can be applied 
to the study of heterogeneous interactions when the interacting components have different optical 
properties that can be detected by combined data acquisition using the interference and absorbance 
system, and/or the absorbance system at multiple wavelengths.  The global ck(s) of the different signals 
displays information on the composition of different peaks.  For slowly interacting systems, and for 
rapidly interacting systems either at concentrations >> KD or with one component in > 5-fold molar 
excess (Balbo et al. 2005), the composition of the reaction boundary directly reports on the complex 
stoichiometries.  This can be highly useful or indispensable for determining the binding model, in 
particular for multi-step, extended associations.  However, once the model has been identified, for the 
quantitative isotherm analysis for the determination of binding constants, ck(s) does not provide an 
additional advantage over the global analysis of all isotherm data derived from the conventional c(s) 
analyses at all signals.  In the latter, the different signal contributions can be naturally accounted for by 
considering each component’s extinction coefficient.  The availability of different signals that arise to 
different extent from the interacting components will be highly useful.   

 

 iii) Repulsive interactions 

Repulsive interactions occur at high protein concentrations.  Repulsive interactions are ubiquitous in 
cellular environment, and sometimes may cause significant differences in binding constants in vitro 
compared to in vivo (Minton 2001).  In SE, effects of crowding on protein interactions have been 
experimentally studied using a fractionation technique, and were interpreted in a firm theoretical 
framework (Rivas et al. 1999).  In contrast, studies under crowded conditions have not been established in 
SV, and we are not aware of a similar theoretical framework for data interpretation of SV of multi-
component solutions under crowded conditions.   

Nevertheless, in SV repulsive effects are encountered at high protein concentrations, and the 
experimenter needs to be familiar with them and know how they can be – to some extent – taken into 
account.  A first-order approximation for single-component solutions of the effect of decreasing s-value 
with increasing protein concentration is the description  

      ( ), ,( ) 1i meas i ideal Ss c s k c= +      (17) 

, where si,meas and si,ideal are the s-values experimentally observed at a finite concentration c and ideally in 
infinite dilution, and the non-ideality constant kS.  kS depends on the partial-specific volume and the shape 
of the macromolecule.  Typical magnitudes for kS are on the order of 10 ml/g or less, but larger values can 
be expected for asymmetric molecules (Schachman 1959; Creeth and Knight 1965; Rowe 1992). For 
example, a value of 0.009 ml/mg for compact, approximately spherical proteins, leads at 0.1 mg/ml to ~ 
0.1% lower s-value as compared to that in ideal infinite dilution (i.e. within typical experimental error), 
but ~ 1% lower s-value at 1 mg/ml, and ~ 8 % lower at 10 mg/ml.  Therefore, at concentrations < 1 mg/ml 
the effects are usually close to negligible.  However, kS is much larger for highly elongated 
macromolecules, such that non-ideality effects set in at much lower concentrations.  For non-interacting 
species, the experimental s-values can be fit with Eq. 17 to derive kS, and generally more importantly, the 
s-value of that species extrapolated to infinite dilution.   

Alternatively, first-order corrections for non-ideality can be made in the Lamm equation Eq. 5 
(Dishon et al. 1967; Solovyova et al. 2001).  This also requires consideration of the concentration 
dependence of the diffusion coefficient, ( )( ) 1meas ideal DD c D k c= + , expressed through the coefficient 
kD.  Both kS and kD are can be determined by Lamm equation modeling.  They are related to the second 
virial coefficient via 22S Dk k MA+ ≅ , a relationship that has been used for the evaluation of weak 
interparticle interactions in complex solvents, with application to the study of crystallization conditions 
(Solovyova et al. 2001). 
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Frequently when studying interacting systems, concentrations greater than 1 mg/ml have to be 
used, such that non-ideality effects are superimposed to the concentration-dependence of the s-values 
arising from (attractive) protein interactions.  Figure 11 shows an example for the deviations in the 
isotherm of weight-average sedimentation coefficient sw(c) to be expected for a weak monomer-dimer 
interaction.  Although the mutual repulsive interactions may be different for monomer and dimer (and 
their cross-terms), the data do not have sufficient information to extract several non-ideality coefficients.  
A pragmatic and probably in most cases safe assumption is that a first-order approximation is sufficient, 
in which all repulsive terms are described by one average value for kS.  Similar is true for other interaction 
schemes.  However, the analyses that are based on the amplitudes of the different peaks (representing the 
species populations for slowly interacting systems, or the magnitude of the undisturbed and reaction 
boundary, respectively) are much less susceptible to non-ideality-induced shifts in s-values.  Similarly, 
the analysis of the peak composition with multi-signal ck(s) does not depend on the species s-values.  An 
example of the analysis of very weak interactions in the presence of non-ideality is the application to 
carbohydrate interactions (Patel et al. 2007). 

The presented approaches can only be a considered first-order approximation for the treatment of 
slight or moderate non-ideality, and it is preferable if experiments can be conducted at concentrations less 
than a few mg/ml (or even < 1 mg/ml where non-ideality is usually negligible).  At very high protein 
concentrations the repulsive interactions can completely dominate the sedimentation and show more 
complex patterns of concentration profiles.  This includes the classic Johnston-Ogston effect (Johnston 
and Ogston 1946), which is a boundary inversion in the slowly sedimenting component due to the 
differential concentration dependence in the presence and absence (below and above the boundary) of a 
faster sedimenting component.  In addition, optical aberrations frequently occur under such conditions.   

 

c)  Hydrodynamic Analysis of Gross Solution Shape and Conformational Changes 

For a macromolecule of known molar mass and density (partial-specific volume), from the measured s-
value the hydrodynamic translational frictional ratio can be determined.  Because this approach is first-
principle based and does not require any size standards, and due to the high precision of the 
experimentally measured sedimentation coefficients, it is possible to interpret the frictional ratio 
quantitatively in terms of different macromolecular shapes in solution.  It is obvious, though, that a single 
number, even though a precisely determined one, cannot reveal unambiguously a three-dimensional 
structure.  The latter consideration is crucial for the interpretation of the f/f0 value. 

Traditionally, f/f0 is interpreted in terms of alternate hydrodynamically equivalent model shapes.  
For example, we can obtain the dimensions of the hydrodynamically equivalent smooth and compact 
prolate ellipsoids, oblate ellipsoids, and rods of the same mass.  Thus, if additional knowledge on the type 

Figure 11:  Self-association in the presence of 
hydrodynamic non-ideal sedimentation.  The weight-
average s-values sw(c) for a model monomer-dimer 
system with s1 =  5 S, s2 =  8 S, KA = 2×104 M-1 and with a 
non-ideality coefficient ks of 0.009 ml/mg approximating 
that expected for spherical particles.  Shown is the sw 
isotherms that would be measured in the presence (solid 
line) and absence (dashed line) of hydrodynamic non-
ideality. 
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of shape is available or hypothesized, the gross dimensions of the macromolecule in solution can be 
obtained from the experimental f/f0.  However, if translational frictional coefficients for the protein in 
different oligomeric states are available, the ambiguity between a flat, roughly disk-shaped (oblate) and a 
cigar-shaped (prolate) molecule may be removed and geometric aspects of complex formation be deduced 
(Schuck et al. 2000; Burgess et al. 2005).  For example, the ratio of frictional coefficients from monomer 
and dimer of a linearly elongated molecule with end-to-end association or a disk that associates by 
stacking are very different, in the former case leading to a higher frictional ratio of the dimer, in the latter 
case to a lower frictional ratio of the dimer.  

A much stronger use of the experimental frictional ratio can be made in comparative mode, either 
comparing different protein variants, proteins with/without small ligand, or under different solution 
conditions that may induce conformational changes.  Frequently, crystal structures are available from 
which a theoretical frictional ratio (or directly a theoretical s-value) may be calculated and compared to 
the experimental value (Errington and Rowe 2003).  Sometimes structures of subunits are available and 
different hypotheses for their spatial arrangement can be tested against the experimental data.  Theoretical 
predictions of hydrodynamic properties can be made, for example, with the software HYDROPRO 
(Garcia De La Torre et al. 2000) and/or SOMO (Rai et al. 2005) on the basis of pdb files.  Care must be 
taken, however, to use the entire molecule in the structure subjected to the calculation, including tags, or 
flexible regions potentially missing from the crystal structure.  For the latter, frequently several 
hypothetical conformations are assumed spanning very extended and very compact geometric 
arrangements, translating into a range of possible s-values.  Similarly, the hydrodynamic information can 
complement data from other biophysical solution techniques (see below).   

 

 

2.  Basic Principles: Experimental 
 

It is assumed in the following that the reader is familiar with the description of the experimental 
aspects of SE analytical ultracentrifugation described in Unit [Copy-Editor, please insert ref to 
Equilibrium Sedimentation Unit] of this series.  Many of the experimental considerations will 
be very similar for SV, as it is based on the same experimental device.  This includes the choice 
of the detection system and its consequences for the possible buffers, the range of protein 
concentrations, and the factors relating to protein partial-specific volume.  However, slight 
differences arise in the SV configuration and additional aspects appear, for example, due to the 
use of higher rotor speeds.  These topics are important for the design of a SV experiment and 
discussed in the following.  For more detailed instructions, the reader is referred to the step-by-
step protocol provided as internet resource.   

 

a) Choice of Detection System  

Of the two commonly available detection systems, the absorbance (ABS) and the interferometric 
(IF) refractive index system, in the absence of special considerations outlined below, the latter is 
usually the system of choice for SV experiments.  This is despite the systematic signal offsets 
arising from jitter, integral fringe shifts, and radial-dependent baseline, because in SV 
experiments, the data have sufficient information for these signal contributions to be readily 
calculated (Figure 12).  Further, due to the shorter experimental time and the use of a single rotor 
speed throughout, there is no need for ‘aging’ of the centerpieces (in contrast to SE experiments 
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when IF optics is used).  This allows the excellent sensitivity of the IF system, the fast rate of 
scanning, and the high radial resolution to be fully exploited.   

However, when using the IF system, due to the higher rotor speed, even greater care must 
be taken in SV ultracentrifugation to establish that the buffer in the reference sector is precisely 
matched in chemical composition.  Sedimenting salt contributes a very significant signal, which 
takes the form of a baseline slope increasing with time (or decreasing with time if the excess salt 
is in the reference buffer).  If unmatched, these signals have to be modeled explicitly and can 
cause some correlation with a broad distribution of very large s-values.  (For the same reason, it 
is also very important in SV to precisely match the volumes inserted in the sample and reference 
sector of the ultracentrifugal cell, see below.)  Matching routinely works very well using 
dialysate or running buffer from gel filtration.  However, in cases where there is a large amount 
of co-solvent giving very high IF signals (e.g., high salt buffers > 1 M, and buffers containing 
sucrose, glycerol, or detergents), it can be extremely difficult to precisely match the signals in 
sample and reference sector, and the use of the ABS system is advantageous.  If the use of the IF 
system is critical, it may be best to omit the co-solvent altogether from the reference solution and 
explicitly model their signal contribution.  (In this case, it might be advantageous to sediment the 
co-solvent in a separate cell).  

 

 

 

 

 

 

 

 

 

 

 

Another case where the ABS system obviously is advantageous is the study of 
heterogeneous interactions of proteins with different extinction properties.  As mentioned above 
in the introduction of the multi-signal sedimentation coefficient distribution ck(s), it may not be 
necessary to introduce extrinsic chromophoric labels if the mg/ml based extinction coefficient of 
two proteins is different, and the IF and the ABS system (e.g., at 280 nm) are used 
simultaneously.  If a fluorescent label is present on the molecules, this is accompanied by a 
strong absorbance band that usually allows convenient selective detection with the ABS system.  
If the ABS system is applied acquiring data at different wavelengths, it is desirable that 
extinction maxima or minima are used such as to minimize the effect of small inaccuracies in the 
wavelength control.  (However, usually a sufficient number of scans are available to selectively 
include only those scans where the wavelengths are at the desired value.) 

Figure 12:  Example of raw interference optical data 
(top).  Both the time-dependent (radial-invariant, RI) 
signal offsets arising from jitter and integral fringe shifts, 
as well as the radial-dependent (time-invariant, TI) signal 
offset  arising from imperfections in the smoothness of 
the optical elements can be clearly discerned.  After 
fitting the data with a model including terms for TI and RI 
noise (see Eq. 6), the best-fit values for the TI noise (red 
line in top panel) and for the RI noise (not shown) can be 
subtracted from the raw data, as shown in the lower panel.  
As long as the degrees of freedom for unknown TI and RI 
noise are maintained in the further analysis, this 
subtraction does not alter the information content of the 
data, but allows better visual inspection of the signal from 
the macromolecular redistribution.   



 22

Generally, it should be noted that the slower scanning speed of the ABS system is not a 
very significant drawback and one should not be discouraged from its use.  Even the ABS system 
does invariably display small systematic, radial-dependent signal offsets resulting from 
imperfections in the windows, such that the inclusion of TI noise in the data analysis is 
recommended, except for very small species < 5 kDa.   

 

b) Buffers  

As discussed in the Unit on SE ultracentrifugation, buffers need to be compatible with the optical 
detection system.  There are several special considerations due to the sedimentation of the buffer 
components in the high centrifugal fields employed in SV ultracentrifugation.  Besides the 
refractive index signals arising from the buffer components, as indicated above, the density 
gradient associated with the sedimenting buffer components at high concentrations can be a 
concern, particularly when using co-solvents like sucrose and glycerol.  In this case, regions of 
different solvent densities are dynamically created during the sedimentation experiment, which 
noticeably alters the macromolecular sedimentation pattern.  This can be taken into account 
computationally in SEDFIT if the sedimentation and diffusion coefficient of the co-solvent are 
measured separately (Schuck 2004a).  Whether or not significant density gradients occur can be 
determined from a separate experiment where the sedimentation profiles of the co-solvent alone 
(but at the same concentration and other buffer conditions as in the macromolecular experiment) 
are measured with the IF system.  This will report on the final concentration difference between 
meniscus and bottom relative to the loading concentration, and density tables or the software 
SEDNTERP can be consulted to determine whether the maximal shift in sedimentation 
coefficients induced by the solvent buoyancy change is significant and needs to be accounted for.   

 

c) Size, Partial-Specific Volume, and Prior Characterization of the Proteins 

The size of molecules that can be conveniently studied by SV ranges from ~ 1 kDa or less to > 1 
GDa.  Over most of this range, protein interactions can be studied as outlined above.  However, 
for species < 10 kDa and > 10 MDa special considerations arise from the presence of very strong 
and very little diffusion, respectively.    

For molecules < 10 kDa diffusion is usually quite strong and the associated boundary 
broadening leads to higher correlation of fitting parameters and ambiguity in the correct analysis 
model.  However, diffusional deconvolution of the sedimentation coefficient distribution in the 
c(s) approach works very well also in this size range.  An additional opportunity for study of 
small molecules is to exploit the data available on back-diffusion from the bottom of the cell to 
give more direct molar mass information.  This can be accomplished both by adjusting the fitting 
limits in the SV analysis to include this range, and by letting the experiment continue until 
sedimentation equilibrium is established, i.e., appending a SE experiment at the end of the SV 
run.  In fact, for very small molecules, SE experiments and SV experiments have both to be 
conducted at the highest possible rotor speed, and the approach to equilibrium of SE can be 
regarded as the SV experiment.  (In contrast, for larger proteins, e.g. greater than ~ 30 kDa, the 
back-diffusion information is ordinarily not useable due to the high local concentration at the 
bottom of the cell, the high signal gradients, and associated optical aberrations.  Further, at the 
high local concentrations at the bottom of the cell, many molecules adsorb to the centerpiece 
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which will alter the back-diffusion in an unpredictable extent.  However, in this size range the 
information on molar mass can be usually extracted conveniently from the sedimentation 
boundaries.) 

For very large species (> 10 MDa), the sedimentation boundaries become very sharp and 
over the short experimental time little diffusional boundary spreading can be observed.  This 
makes the analysis of sedimentation coefficients easier, but the determination of molar masses 
more difficult.  Because it can be problematic to conduct SE experiments on such large 
macromolecules, independent information on the diffusion coefficient may be desirable, for 
example, from dynamic light scattering. 

Regarding the protein partial-specific volume, the same issues exist in SV as in SE, and 
the reader is referred to the discussion in the SE Unit [Copy-Editor, please insert ref to 
Equilibrium Sedimentation Unit] for how to predict v  values.  For glycosylated proteins, it is 
important not only to be aware of the carbohydrate contributions to the protein buoyancy, but 
also to its friction.  Frequently, glycosylated proteins exhibit very high frictional ratios due to 
carbohydrates extending out into the solution.  It is useful to know about the heterogeneity of the 
glycosylation (for example from mass spectroscopy), since heterogeneous samples cannot be 
expected to exhibit sedimentation patterns like that of a single species (see above).  Their 
heterogeneity can be taken into account better with distribution models, such as c(s), c(M), or the 
two-dimensional distributions.  Similarly, when studying membrane proteins, the contribution of 
detergent to a protein/detergent complex can be eliminated with regard to the partial-specific 
volume and buoyant mass under density matching conditions (where 0 1/ Dvρ = ), but the 
detergent will continue to have a very large effect on the hydrodynamic friction and the s-value 
(Gohon et al. 2004).   

SV offers a much better resolution than SE ultracentrifugation, and as a consequence, 
impurities, in particular small molecular weight impurities, can be much more tolerable as long 
as they sediment outside of the range of s-values expected for the interacting proteins.  
Nevertheless, it is highly desirable that the proteins be purified by size-exclusion 
chromatography as the last step of purification, and that the purity is greater than 95%.  Purity 
should be assessed also by SDS-PAGE, and the molar mass should be known, preferably from 
mass spectroscopy.  Extinction coefficients should be estimated from the amino acid sequence 
for setting up the experiment, but if they are critical (such as in the multi-signal ck(s) analysis) 
should be determined in separate experiments in the ultracentrifuge.  (This will eliminate 
discrepancies from imperfections in the monochromator.) 

  

d) Concentrations and Sample Volumes 

The best sample concentrations depend on the question asked with the experiment, the type of 
interacting system and its binding constants, as well as on the detection system that is used.  
Generally the same considerations are valid as outlined in the Unit on SE ultracentrifugation.  
Briefly, to study binding constants it is important to achieve concentrations where both free and 
complex species are detected and their relative concentration can be shifted.  (The calculator 
function in SEDPHAT can be used predicting each species concentrations given the total loading 
concentrations for each component and an estimate of the equilibrium constants.)  Unlike in SE 
ultracentrifugation, however, the loading concentrations are an upper limit of the concentration 
range observed in a single experiment, because in SV we usually cannot take advantage of the 
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concentrating effect of the centrifugal field close to the bottom of the cell.  It is the loading 
concentrations that should span ideally from 0.1-fold to 10-fold KD.  Due to the information 
gained from the concentration-dependence of the c(s) peaks (Figures 7 – 9), it is crucial to study 
the proteins at a range of concentrations, and we recommend that even for studying proteins that 
are not expected to self- or hetero-associate, since in our experience, the presence of interactions 
frequently may not have been apparent on the basis of other common prior characterization 
techniques.  For heterogeneous interactions, it is crucial to study each component alone in 
separate cells, in addition to the mixtures.  Whereas in SE it was highly desirable to conduct sets 
of experiments as either dilution or titration series so as to invoke additional mass conservation 
constraints in the global analysis, there is no advantage in the SV analysis of using such 
particular configurations.   

One non-trivial problem related to the sample concentrations of slowly interacting 
systems can be to establish that the mixture is in chemical equilibrium before the start of the 
experiment.  For example, if the result of an initial SV run indicates complex life-times of > 104 
sec (by displaying peaks for the complexes with concentration-independent s-values), one needs 
to verify that, before the start of the SV run, the sample had a chance to chemically equilibrate 
for several hours or overnight if the mixture was prepared by dilution of a higher concentrated 
stock.  Ordinarily this will require repeating the run with the appropriate incubation times for the 
sample mixtures (Yikilmaz et al. 2005). 

When the hydrodynamic analysis of the shape of a rapidly reversible complex is desired, 
one should raise the concentrations as much as possible to saturate the complex, but not yet as to 
encounter hydrodynamic repulsive non-ideality.  To determine the complex s-value, the analysis 
of the binding isotherm is necessary.  In this regard, the application of Gilbert-Jenkins theory to 
the analysis of the concentration-dependent s-value of the fast boundary component is 
particularly useful, as the measured values are closer to the s-value of the complex.   

For an optimal SV analysis, long solution columns are required.  In standard 12 mm 
centerpieces, we routinely use 400 μl samples (for both sample and reference sector, precisely 
matched in volume and composition).  In order to save material for the samples at high 
concentrations, it is possible to use 3 mm centerpieces reducing the required volume to 100 μl 
per cell.  (In our experience, we have not observed detrimental effects on the data quality from 
the change in focal plane due to the different cell geometry.)  This can have the added advantage 
of avoiding too high optical densities > 1.5 OD to be recorded with the ABS system (too high 
signals are not a concern in the IF system).  For the lower concentration samples, the 12 mm 
centerpieces are preferred due to their better signal-to-noise ratio.   

 

e) Rotor Speed, Rotor Temperature, and Experimental Time 

The goal of the SV experiment is hydrodynamic separation, which can be achieved with best 
resolution in high centrifugal fields.  The rotor speed should be 50,000 rpm for most medium 
sized proteins, or 60,000 for species < 10 – 20 kDa.  If the IF system is employed, the scans are 
acquired in sufficiently high rate to study even large molecules (e.g., 500 kDa) at 50,000 rpm.  
Only above that range is it necessary to reduce the rotor speed to 40,000 rpm or below.  In 
exceptional cases (e.g., when the hydrodynamic resolution of species and the characterization of 
the binding constants are not important but the determination of molar mass is the most 
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important aspect of the experiment), one may decrease the rotor speed to extend the diffusional 
time and increase the boundary spread.   

The long solution columns and high rotor speeds lead to the generation of a moderate 
pressure (~ 20 – 30 MPa) at the bottom of the cell, which in rare cases affects the assembly of 
protein complexes when significant changes of the partial-specific volume occur during complex 
formation (Harrington and Kegeles 1973).  A well-known example is the depolymerization of 
tubulin at high rotor speeds (Marcum and Borisy 1978).  Such pressure effects would be 
observed in a rotor-speed dependence of the equilibrium constants, and are not typically 
considered.  A different pressure effect occurs from the compressibility of water, which is 
typically neglected, but can be significant in particular in the study of small molecules (Schuck 
2004b).  It can be accounted by corrections in Eq. 5. that describe the local change in buoyancy 
of the sedimenting proteins, as implemented in SEDFIT.  

In contrast to SE ultracentrifugation, it is mandatory for SV that the rotor and the sample 
is thoroughly temperature equilibrated.  In practice, convection induced by local temperature 
fluctuations is among the chief limiting factors in the precision of the sedimentation coefficients.  
A rigorous temperature equilibration procedure is described in the step-by-step protocol.  The 
run temperature itself is not critical and can be adjusted easily between 10 and 30 °C (and with 
more care between 4 and 40 °C)  as dictated by the requirements of the study.  Usually, it is most 
convenient to conduct the SV experiments at close to 20 °C, the standard temperature for 
hydrodynamic calculations, so as to minimize the buffer correction factors.   

The experimental time is typically several hours, depending on the s-value of the proteins 
under study.  It is very important to let the sedimentation proceed until the trailing part of the 
boundary has disappeared.  With samples not previously studied in SV, it is frequently 
advantageous to scan for a long time after this, as this can be helpful later in the data analysis 
stage to determine the nature of unexpected small molecular weight contaminants.  Also, the 
baseline parameters will be better defined if very late scans are available with little or virtually 
no further sedimentation.   

 

f) Fit Criteria and The Precision of the Derived Parameters  
It is important to establish that the data analysis model actually fits the raw data.  This issue has 
not always been part of the tradition of SV analysis, in particular when using previous data 
transformation methods that lack back-transformation of the model into the raw data space 
(Schuck et al. 2002; Schuck 2003).  However, it is obviously essential for a reliable and rational 
data interpretation.  This is particularly true when using more detailed analysis models, and it is a 
great strength of the direct data analysis approach followed in the present Unit that it can provide 
rigorous comparison of raw data and best-fit model.  If the best-fit model does not match the data 
well, it is obviously questionable whether the parameters described by it reflect the true 
molecular properties. 

As in all biophysical disciplines, in addition to the statistical errors from noise in the data 
acquisition, there are sources of systematic errors that are poorly controlled in experimental 
practice.  These systematic errors limit the level of detail beyond which the data are not 
commonly interpreted.  In SV ultracentrifugation, the fit quality should be such that the ordinary 
overlay of residuals of all scans does not allow discerning any systematic deviations.  However, 
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this is usually not a sufficient criterion.  On the other hand, a strictly mathematical runs-test for 
systematics of residuals (such as the quantity Z calculated in SEDFIT, which ideally should be 
close to unity (Straume and Johnson 1992)) is much too stringent for practical use in most SV 
analyses.  In order to permit a well-balanced visual discrimination of systematic versus statistical 
residuals better suitable to the signal/noise ratio in SV, we have developed a graphical 
representation of the residuals of all scans, by displaying the residuals in a 2d grayscale bitmap, 
where each radius at each scan time is represented by a pixel (see Figure 13) (Schuck et al. 
2002).  Here, residuals originating from instabilities in the TI and RI signal contributions 
typically display as horizontal or vertical lines, whereas systematic misfits of the signal from the 
macromolecular sedimentation boundary produces diagonal features.  An ideal fit only 
containing statistical errors will have a bitmap that is entirely featureless to the human eye.  In 
practice, the fit to experimental SV data should be free of diagonal features.  An example for the 
difference between an excellent and a poor fit in the bitmap representation is shown in Figure 13.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One important strategy to achieve good fits is to include the meniscus of the solution 
column as an adjustable fitting parameter.  For models that include small Mw species that show 
some back-diffusion within the radial range of data analysis, the bottom of the solution column 
should be an adjustable fitting parameter, too.  Although a rough visual localization of the 
meniscus is possible from the radial range of its optical artifact, the minimum and maximum 
radius values of this signal feature should be used only to define upper and lower limits of the 
true meniscus location.  Since the data analysis results in s-values that are far more precise than 
the possible visual localization of the meniscus, any fixed constraint will likely lead to a bias 
resulting in significant misfit.  (It is a misconception that the true meniscus position would have 
to coincide with the maximum signal from the optical artifact.  Among other factors, the location 
will depend on the nature of the macromolecule and solvent.) 

Figure 13:   Demonstration of a fit with insufficient quality.   
The data form Figure 3 (Panel A, solid lines, showing only a 
representative subset of the scans) are modeled with an impostor 
single-species fit (Panel A, dashed lines).  Although the 
theoretical boundaries roughly outline the shapes of the 
sedimentation boundary, and the root-mean-square deviation is 
only 0.0084 fringes – only slightly above the typically 
encountered noise of data acquisition – the residuals overlay 
(Panel B) shows systematic deviations.  The bitmap 
representation of the residuals (Panel C) highlights the misfit by 
showing a significant diagonal feature arising from systematic 
misfits in the sedimenting boundary.   In contrast, fitting the data 
with a c(s) model (data not shown) results in a residuals bitmap 
(Panel D) with very little diagonal features, but some vertical and 
horizontal lines indicative of the remaining residuals being due to 
technical imperfections in the data acquisition process (e.g., 
vibrations of optical elements).  The root-mean square deviation 
for the c(s) model is 0.0033 fringes.  The importance of critical 
inspection of the fit quality can be seen from comparing the 
molar mass estimate derived from the inadequate single-species 
fit of 60.1 kDa with the molar mass distributions shown in Figure 
3: the single-species fit would lead to qualitatively wrong 
conclusions about the oligomerization state of the molecule.  The 
s-value of the major species is not quite as sensitive to 
imperfections in the fit.   
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The most common sources of error in the SV experiment are signal offsets from optically 
unmatched buffer salts, and convection.  The optically unmatched buffer salts contribute signal 
in the interference optics only, and can frequently be accounted for by including an extra discrete 
low Mw species into the data analysis, such as the ‘c(s) with 1 discrete component’ model in 
SEDFIT, optimizing the apparent Mw and s of this species.  For this to work best, it is beneficial 
to include very late scans into the analysis, even beyond the point where the macromolecular 
sedimentation has completed (i.e. the trailing part of the boundary has reached the bottom of the 
cell).  In order to better identify contaminations from small Mw impurities, it is prudent to 
conduct the experimental data acquisition for a long time (e.g. overnight) beyond the expected 
macromolecular sedimentation time.   

Convection is the turbulent, macroscopic movement of volume elements of the solution.  
This can be driven by temperature gradients, and/or misalignment or scratches on the 
centerpiece.  Even though convection may occur only at the beginning of the experiment, its 
results do affect all the later scans by delaying the elapsed time at which the boundary arrives at 
a certain radius.  Most analysis models depend on the entire history of the experiment from its 
start to the last scan modeled (this also includes all of the superseded data transformation and/or 
differentiating approaches, with the only exceptions being Lamm equation models that explicitly 
take an initial scan as starting point (Cox 1966; Schuck et al. 1998), and a particular form of a 
differential second moment mass conservation approach to derive sw (Schachman 1959; Schuck 
2003)).  One indicator of convection is that the best-fit meniscus position is at the minimum or 
maximum allowed value (when these limits have been set close to the bounds of the optical 
artifact), within what can be identified as the air-to-air region above the solution column, or 
within the solution column, respectively. 

If it is not possible to arrive at a virtually perfect fit within the statistical noise of the data, 
it is important to know how susceptible different analysis parameters can be to misfits.  The most 
robust number is usually the weight-average s-value sw of the entire distribution (excluding 
signals at the lowest s-values that may be affected by possible correlation with the baseline 
(Schuck 2006)) and the associated loading concentration.  Similarly robust is the sw  and 
concentration value integrating across the major peaks.  The typical precision of a well-executed 
SV analysis is better than 0.01 S (for species < 10 S).  For minor peaks in c(s), the concentration 
over a wider s-range is more robust than the precise location of a peak.  For a detailed practical 
study on the precision of trace components, see (Pekar and Sukumar 2007).  Finally, the most 
susceptible parameters are those that quantify the boundary spreading, such as the molar masses, 
frictional ratios, diffusion coefficients, and kinetic parameters in Lamm equation models with 
reaction terms.   

Due to the high signal/noise ratio of typical SV experiments, the systematic errors can 
have a bigger impact than statistical parameter uncertainty.  However, it is important to be aware 
of the statistical precision of the different parameters, as well, in particular when studying 
interacting systems and interpreting details of the distributions.  It is not unusual that features can 
be discerned with confidence from signal amplitudes lower than the noise of data acquisition, 
due to the large number of data points typically entering the analysis (104-105).  In SEDFIT, a 
tool is available for the Monte-Carlo analysis of the statistical errors of s-values and 
concentration values from integrating c(s) over certain ranges.  It should be noted that the use of 
Bayesian prior knowledge is a powerful tool to explore statistically equivalent, alternative data 
interpretations.  In SEDPHAT, for the analysis of interacting systems, Monte-Carlo routines are 
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available, as well.  However, it should be noted that for complex error surfaces, which may arise 
in global fits of interacting systems, the Monte-Carlo approach is not rigorous due to the 
automatic optimization required for each iteration.  In this case, manually exploring the error 
contour using F-statistics (Straume and Johnson 1992)  is the best approach (for more details see 
(Schuck 2007c)).  Finally, error limits can be greatly reduced by globally modeling data from 
different concentrations, both for interacting and non-interacting species models, in SEDPHAT 
(Hsu et al. 2005; Chou et al. 2006; Lelj-Garolla and Mauk 2006; Liu et al. 2006b).  

 

 

3.  Complementarity to Other Biophyiscal Techniques 
 

SV ultracentrifugation can be particularly strong method to complement other biophysical 
techniques in the study of protein interactions.  This is due to the fact that in SV, it is frequently 
possible to hydrodynamically resolve different co-existing species, which allows to determine 
the association scheme of an interaction (number of species and their stoichiometry) frequently 
better than on the basis of an isotherm analysis of an average property in solution alone, be it 
heats in isothermal titration calorimetry (ITC) or spectroscopic signals in circular dichroism 
(CD), fluorescence spectroscopy, or other spectroscopic or scattering approaches.  For example, 
for reactants of sufficient size, it can be convenient to recollect the material after an ITC titration 
for study by SV centrifugation, independently (and separately) confirming the complex 
stoichiometry, active concentrations, and aggregation state.  Further, SV can usually give 
unequivocal information on protein oligomeric state under solution conditions employed in other 
techniques.  The latter is very important, for example, for the mobile analyte used in surface 
plasmon resonance (SPR) or other biosensing techniques (Schuck 1997).   

 As indicated in the Unit on SE ultracentrifugation [Copy-Editor, please insert ref to 
Equilibrium Sedimentation Unit], SV is routinely used in our laboratory to study samples prior to 
SE ultracentrifugation.  This is because of the ability of SV to detect impurities and degradation 
products contributing to the signal, the possibility to better identify the interaction scheme, and 
the faster time-scale of SV.  Vice versa, it can be very useful to confirm the stoichiometry of 
complexes by independent study of the molar mass in SE.  Global analysis of SV and SE data in 
SEDPHAT can be a stringent test for sample purity and the interaction model (Davis et al. 2004).  

 Another technique that is traditionally used side-by-side with SV is dynamic light 
scattering (DLS), as both can measure protein translational diffusion coefficients in free solution 
(molecular weight numbers supplied by some DLS manufacturer software should be ignored).  
The agreement between the diffusion coefficients measured by DLS and SV is excellent for 
mono-disperse samples (Schuck et al. 2000).  Similarly, for a monomer-oligomer assembly 
process, excellent agreement between the ratios of diffusion coefficients measured by 
fluorescence correlation spectroscopy and the ratios of s-values was reported (Boukari et al. 
2004).  A second area of very productive complementarity between DLS and SV is the study of 
conformational changes upon ligand binding.  If the ligand is small, conformational changes 
leading to an increase of the frictional coefficient after binding are associated with a lower s- and 
higher D-value, while those leading to a decrease of the frictional coefficient are associated with 
a higher s- and lower D-value.  Considering the slightly increased mass of the protein/ligand 
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complex, the former can be unambiguously identified directly by SV but not easily with DLS, 
and the latter case can be unambiguously identified directly by DLS and not easily with SV.   

When studying conformational changes upon ligand binding, SV is complementary also 
to CD, as conformational changes in the secondary structure detectable by CD may leave the 
tertiary structure (and translational friction coefficient) unchanged, while changes in the subunit 
arrangement may be detected by SV but not be accompanied with a CD spectroscopic signature.  
It should be noted that sample amounts and concentrations are well compatible between CD and 
SV.   

It can be very interesting to compare the solution structure of proteins or protein 
complexes with available crystal structures of the protein (complex) or of subunits.  As outlined 
above, this can be done on the basis of hydrodynamic data from SV ultracentrifugation.  Clearly, 
small angle x-ray and neutron scattering provide much more detail about the solution structure 
(Svergun and Vachette 2007), although sometimes information on the translational frictional 
ratio from SV may aid in further improving the discrimination between alternate models (Furtado 
et al. 2004; Nollmann et al. 2004).  Vice versa, structural information can be highly useful to predict 
sedimentation coefficients of complex species in interacting systems, which can allow for one to 
fix these parameters and reduce parameter correlations in the modeling of SV isotherms. 

 In summary, the application of SV can frequently contribute synergistically to the 
specific unique aspects of macromolecular interactions probed by other techniques.  Isotherms 
derived from different techniques can be modeled globally in SEDPHAT.  When samples are 
studied in sequence with other methods, it should be noted that, although the sample can be 
recovered from SV and studied, for example, by SDS-PAGE or mass spectroscopy, the proteins 
are usually not suitable for quantitative biophysical studies after SV, due to their exposure at 
extremely high concentration with the bottom of the centerpiece, where frequently poorly 
reversible aggregation and surface film formation takes place.   

 

 

4. Summary 
In this Unit, we have introduced basic practical and theoretical aspects for the design of standard 
SV ultracentrifugation experiments for the study of protein interactions.  It is thought to be used 
in conjunction with the internet-based practical step-by-step protocol (Balbo et al. 2007) that 
describes in detail how to conduct an SV experiment.  More tutorial material and a complete 
detailed reference manual for the SEDFIT and SEDPHAT software can be found at (Schuck 
2007c).  Finally, hands-on workshops are conducted regularly in our laboratory at the National 
Institutes of Health.   

Analytical ultracentrifugation is a very powerful method with a long history with virtually 
unlimited number of experimental strategies and variations.  For obvious reasons, we have 
confined the present commentary to the currently most commonly used experimental and 
analysis approaches, which usually give the most reliable and detailed results for a wide class of 
problems.  Topics not treated include analytical zone centrifugation, isopycnic density gradient 
sedimentation, sedimentation with density contrast, and specific aspects of the study of 
detergent-solubilized membrane proteins. For these and for more advanced aspects on the 
methods described, the reader is referred to the literature cited. 
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