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Background

• data           often report only indirectly on the quantity of interest ( )a τ ( )c R

max

min

( ) ( ) ( , )
R

R
a c R g R dRτ = τ∫

2 1
2(1)

1( , ) a q Rg R a e
−− ττ =

∑ πλ−=
i

rrEtI )2sin()( 00

P
M



4

Background

• data           often report only indirectly on the quantity of interest ( )a τ ( )c R

max

min

( ) ( ) ( , )
R

R
a c R g R dRτ = τ∫

2 1
2(1)

1( , ) a q Rg R a e
−− ττ =

• Stephen Provencher (1982): fit integral equation to experimental DLS data with CONTIN

• use Tikhonov regularization (or maximum entropy), scale      with F-statistics or 
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Optical Biosensing

Physical Principle of the Experiment

immobilization of protein to 
serve as binding sites
(usually amine coupling to CM 
dextran)dextran)

detection with, e.g., 
surface plasmon resonance

• highly reproduciblehighly reproducible
• great signal/noise ratio
• flow-injection of analyte

( ) 0(1 / )( )1( , , , ) 1 off Dk c K t t
a D off Ds K k c t K c e− + −−= +0 0b t t⎧ <

⎪⎪

For a single class of sites with equilibrium dissociation constant KD and off-rate constant koff (and 
on-rate constant kon = koff/KD), we expect piece-wise single-exponential traces:

( )ff

( )( , , , ) ( , , , ) off ck t t
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d off D c

s K k c t s k K c t b t t t t
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Ann. Rev. Biophys. Biomol. Struct. 26(1997):541
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Data: family of traces at different concentrations (obtained from the same surface)
Fit with single discrete site model

experimental data are highly reproducible, but usually not single exponentials
(unless truncated, or collected at extremely low signal/noise)
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“God made the solid state, he left the surface to the devil” (Enrico Fermi)
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kK

The Model Optical Biosensing

,max,max
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tot D off
k

P P K k dk dK= ∫ ∫
Let P(KD,koff)dKDdkoff be the population of molecules with 
affinity between KD and KD+dKD, and with chemical off-
rate constants between koff and koff+d koff
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without transport limitation
linear, independent sites

( ) ( )s c t s c t= ∑

with a single ‘effective’ transport rate constant
compartment model for transport, 
large system of rate equations coupled by competition for 
surface concentration of analyte

0 0( , , , )
ff ff

d off D cs k K c t b t t t⎪ + > +⎪⎩

( ) 0(1 / )( )1( , , , ) 1 off Dk c K t t
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0/ ( )s t s rdc dt k c c j= − −
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( , ) ( , )tot i
i

s c t s c t= ∑

Svitel et al. (2003) Biophys. J. 84:4062-4077
Svitel et al. (2007) Biophys. J. 92:1742
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naïve inversion would be ill-conditioned, amplify noise

need regularization (e g CONTIN)need regularization (e.g., CONTIN)

selects from all statistically indistinguishable fits the most parsimonious one

F-statistics sets an upper limit for acceptable rmsd values

maximum entropy or Tikhonov-Phillips regularizationmaximum entropy or Tikhonov Phillips regularization 

with a Bayesian approach to incorporate prior expectation

( )
222 d PMin signal signal dP

⎛ ⎞
= + ⎜ ⎟∑ ∫α( )exp model 2

intdata po s
Min signal signal d

p rP o
P

d ri
= − + ⎜ ⎟

⎝ ⎠
∑ ∫α

• prior = constant:  all binding parameters are equally likely

• prior = δ-function: there should be a single class of sites

• specific shape of prior could be from previous experiment, mutant, etc.
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EVILFIT:  public domain GUI for distribution analysis of optical biosensor data in MATLAB
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example for the effect of different prior:  data with low information content

concentrations from 5 to 80 μM

prior = δ-function: 
gives the distribution closest to a 
single δ-peak
but not sacrificing quality of fit

prior = constant:  
calculates the broadest 
possible distribution

probing the space of possible distributions that fit the data
this flexibility of interpretation will be small for data with high signal/noise ratio
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example for the effect of different prior:  data with high information content

concentrations from 20 nM to 2 μM

prior = constant:  
calculates the broadest 
possible distribution

prior = δ-function: 
gives the distribution closest to a 
single δ-peak
but not sacrificing quality of fit

probing the space of possible distributions that fit the data 
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replicate experiments, same surface density of sites

Gorshkova et al., Langmuir 24 (2008) 11577
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replicate experiments, same surface density of sites

Gorshkova et al., Langmuir 24 (2008) 11577

from computer simulations: with experimental signal/noise ratio of SPR data, we need > 3-
5fold affinity difference in order to resolve two different sites
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Application:  Microheterogeneity Optical Biosensing

Binding of an antigen to its monoclonal 
antibody immobilized on a short-chainantibody immobilized on a short chain 
carboxy-methyl dextran surface. 
Analyte concentrations 1, 10, and 100 
nM

main peak cannot be 
regarded as a single site
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Application:  Continuum of Sites Optical Biosensing

soluble integrin αX domain binding to immobilized fibrinogen:

native proteolyzed and guanidine-treated fibrinogen 0.28 to 10.6 μMnative, proteolyzed, and guanidine treated fibrinogen

as a model for leukocytes recognition of structurally decayed 
protein 

Vorup-Jensen et al., PNAS (2005) 102:1614
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Summary: Functional Heterogeneity of Surface Sites in Biosensing

accounting for surface heterogeneity gives (for the first time) an excellent description ofaccounting for surface heterogeneity gives (for the first time) an excellent description of 
experimental data in most cases

inversion may not be unique, but choice of Bayesian prior allows to probe the space of 
possible distributions consistent with the data

can discriminate conformational change and mass transport processes

allows naturally to distinguish between ‘specific’ and ‘non-specific’ sites

reveals ‘number of sites’

reveals micro-heterogeneity 

appropriate for ‘complex’ functionalized surfaces, optimization of surfaces

implemented in shareware software EVILFITimplemented in shareware software EVILFIT

LIMITATION:  Information content of experiment, essentially exponential kernel



19

analytical ultracentrifugation:  
diffusion with bias due to centrifugal force

Sedimentation Velocity

diffusion with bias due to centrifugal force

#particles
per volume

(σ = 0.025; δ = 0.0005)
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random walk with bias, two non-interacting components

Sedimentation Velocity

(σ1 = 0.01; δ1 = 0.00005; σ2 = 0.025; δ2 = 0.0005)
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Physical Principle of the Experiment

Sedimentation Velocity

• Nobel Prize 1926

laser interferometry (refractive index ~ mass)

• Nobel Prize 1926

• sample in optically transparent  compartment
• inserted in rotor ~ 300,000 g
• measure evolution of radial concentration distribution
• multiple optical systems (absorbance, Rayleigh interferometry)
• since ~ 10 years, fast finite element solutions of Lamm equation (msec) y , q ( )

2 21 rD s r
t r r r

∂ ∂ ∂⎡ ⎤= −⎢ ⎥∂ ∂ ∂⎣ ⎦
χ χ χ ω

1000 kDa, 30 S

100 kDa, 5 S ( )2 3(1 )s M vρ−∼

10 kDa, 1 S

( )1DM v
s

RT

ρ−
=

1 2 3 2
( ) b

rD s as s f
−∼ ∼

( )

1 kDa, 0.3 S RT

Biophys. J. 74 (1998) 466
Comput. Phys. Commun. 178 (2008) 105
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( ) ( )
max max
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The Model Sedimentation Velocity

Size-and-shape distribution ( )c s f ( ) ( )
min min

1( , ) , , , ,r r r
s f

a r t c s f s f r t dsdfχ= ∫ ∫Size-and-shape distribution

Sedimentation coefficient distribution ( ) ( )
max

1 ,( , ) , , ,
s

r wa r t c s s f r t dsχ= ∫

( ), rc s f
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mins
∫
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0 1 ,k
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l k kl k kc l k k

Min a c c H cκ κ
κ

χ α
≥ =

⎡ ⎤⎛ ⎞⎢ ⎥⎟⎜ ⎟⎜⎢ ⎥− +⎟⎜ ⎟⎢ ⎥⎜ ⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦
∑ ∑ ∑discretized problem of the form 

typically with l = 10,000 – 100,000 data points, distribution discretized to k = 100 – 1000 species, use
normal equations and NNLS

with Tikhonov regularization for broad continuous particle distributions

maximum entropy for biological macromolecules

scale regularization iteratively with goal to achieve confidence limits from F-statistics

,
k k

k

c H cκ κ
κ

α∑
log( )k k

k

c cα∑

Bayesian prior distribution to probe space of possible (statistically indistinguishable) solutions

implemented in public domain software SEDFIT and SEDPHAT
Biophys. J. 78 (2000) 1606
Biophys. J. 89 (2005) 651
Biomacromolecules  8 (2007) 2011
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Applications:  Very Large Particles     Sedimentation Velocity

for                 it is 0D =
2 22

1( , ) ( )s t s tr t e H r me−= −ω ωχ

calculating distribution is similar to differentiation of noisy data

( ) 2 22( , ) ( )s t s ta r t c s e H r me dsω ω−= −∫
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r dr
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∗
∗

∗ ∗
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∫

∫

2
( )c s

drm
=

clearly highly ill-conditioned if

( )
2 1

2 3

m
s noise da dr

trω

−
Δ < ×

resolution of species with different s limited 
by signal/noise and rotor speed

boundary spread is sufficiently different from diffusion effect
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Applications:  Very Large Particles     Sedimentation Velocity
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Applications:  Protein Complexes Sedimentation Velocity

6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

sed coefficient [S]

c(
s)

approximately like step-functions, but diffusion broadened

optimize average scaling parameters in non-linear regression, 

7.2%as well as meniscus position

diffusion creates additional correlation between species of similar s

highly quantitative for trace species 1 %
0.5%

highly quantitative for trace species ~ 1 %

very precise s-values 

time-average s-values of systems of rapidly interacting molecules, interpreted as binding isotherms 
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Applications:  Regularization Sedimentation Velocity
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Applications:  Regularization Sedimentation Velocity

BSA
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log( )k k
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of initial distribution 
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Applications:  Multi-Signal SV Analysis Sedimentation Velocity

with multiple signals aλ(r,t): sedimentation coefficient distributions of component k
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aλ(r,t)  sedimentation signal at wavelength λ (or RI)
εkλ extinction coefficient of component k at signal λ 
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• different fraction of tryptophan residues will give characteristic RI  / ε280
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• chromophoric labels

• different spectral decomposition in different s-ranges
wavelength (nm)

PNAS 102 (2005) 81
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mix IgG and aldolase

RI 280 nm 250 nm

multi-λ ck(s) from mixturestandard c(s) for each λ separately
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Spectral resolution → hydrodynamic resolution!
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binding of Grb2 and Sos1 to LAT1pY

Grb2 24 μM
LAT1pY 12 μMLAT1pY 12 μM
Sos1 12 μM
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∫∫ d dDtDLDCt )()()( : SolEqLammL

Applications:  Multi-Method Size-And-Shape Analysis Sedimentation Velocity
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Oligomerized D1-D2 construct
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One of Many Problems:  Solution With Fewest Discrete Species? Sedimentation Velocity

IgG

( ) ( )
max max

1( , ) , , , ,
s f

r r ra r t c s f s f r t dsdfχ= ∫ ∫

data fit as size-and-shape distribution

( ) ( )
min min

1( , ) , , , ,r r r
s f

f f fχ∫ ∫

no regularization
lack of resolution of diffusion dimension justifies scaling law
but may not be strictly fulfilled

with Tikhonov regularization
broad distribution, incompatible with single species
“Bayesian prior” regularization method sometimes too rough
prior assumption of few discrete species often reasonable
susceptibility to systematic errors?




