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Abstract 
The transport behavior of macromolecular mixtures with rapidly reversible complex formation is of great 
interest in the study of protein interactions by many methods. Complicated transport patterns arise even 
for simple bimolecular reactions when all species exhibit different migration velocities.  Although partial 
differential equations are available to describe the spatial and temporal evolution of the interacting system 
given particular initial conditions, a general overview of the phase behavior of the systems in parameter 
space has not yet been accomplished. In the case of sedimentation of two-component mixtures, we 
present simple analytical solutions that solve the underlying equations in the diffusion-free limit 
previously subject to Gilbert-Jenkins theory. The new expressions describe with high precision the 
average sedimentation coefficients and composition of each boundary, which allow examining features of 
the whole parameter space at once, and may be used for experimental design and robust analysis of 
experimental boundary patterns to derive the stoichiometry and affinity of the complex. We find 
previously unrecognized features, including a phase transition between boundary patterns. The model 
reveals the condition that the time-average velocities of all components in the reaction mixture must 
match, which suggests an intuitive physical picture of an ‘effective particle’ of the coupled co-
sedimentation of an interacting system.  Adding to the existing numerical solutions of the relevant partial 
differential equations, the effective particle model provides physical insights in the relationships of 
parameters governing sedimentation patterns.  
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Introduction 

Non-trivial patterns arise in the transport of rapidly reversible systems of interacting macromolecules 
when the life-time of the complexes is short relative to a characteristic transport time of the experiment, 
such that all species remain locally in chemical equilibrium despite their spatial migration at different 
velocities.  This topic is still of great importance, since dynamically associating and dissociating (multi-) 
protein complexes with short life-times are a ubiquitous motif of cellular regulation and biological signal 
transduction pathways, and many biophysical techniques rely on observing the co-transport of bound 
molecules.   

In the present work we focus on the sedimentation behavior of such systems arising in two-component 
mixtures, as observed in sedimentation velocity analytical ultracentrifugation (SV). With the introduction 
of modern instrumentation and computational methods, SV has re-emerged in the last decade as a 
powerful tool with broad applications in structural biology, biochemistry, immunology, biotechnology, 
and nanotechnology, and, in particular, strong increase in interest in SV of interacting systems.  Because 
the experimental configuration of SV permits the hydrodynamic discrimination of boundaries containing 
complexes while they stay immersed in the slower sedimenting constituents (Figure 1 Top), SV offers a 
unique potential for characterizing reversibly interacting macromolecules with regard to the number, 
stoichiometry and binding constant of complex formation, as well as the low resolution conformation of 
the complex.   

So far, the prediction of the temporal and spatial concentration profiles that occur in the sedimentation 
process has been amenable largely only to numerical solutions of the coupled reaction and transport 
equations.  In a seminal work in the 1950s, Gilbert & Jenkins solved (iteratively) the equations of co-
transport of reacting systems in a diffusion-free approximation (1,2).  This simplification highlights the 
salient features of the process: for rapidly reacting two-component systems, the Gilbert-Jenkins theory 
(GJT) explains the occurrence of a mono-disperse ‘undisturbed boundary’ and a polydisperse ‘reaction 
boundary’ (also referred to as ‘asymptotic boundary’, Figure 1 Bottom).  It makes provocative predictions 
for both, among them that the undisturbed boundary migrates with the velocity of one of the free species, 
but it is neither always the one sedimenting slower, nor always the component in molar excess.  Another 
prediction is that the reaction boundary exhibits a concentration dependent range of migration velocities 
in between that of the faster sedimenting component and the complex species, but the overall velocity of 
the reaction boundary does not necessarily increase with increasing total concentrations (Figure 2 
Bottom).   

The GJT is widely accepted and experimentally confirmed, and has remained highly influential to this 
date.  It has been applied similarly to electrophoresis and size-exclusion chromatography of interacting 
systems (3-5) and its principles were generalized to other physical macromolecular interactions (6).  
However, due to the complexity of the approach, very few applications of GJT for data analysis were 
published, no systematic study of boundary features was undertaken (7,8), and no reference to GJT of 
systems more complex than bimolecular two-site binding models can be found in the literature.   

With more computational power readily available, subsequent developments (9-13) have been directed at 
solving the partial-differential equations (PDE) of the coupled reaction-diffusion-migration process (the 
Lamm equation for the case of sedimentation (8,14)).  This is more accurate in reflecting the centrifugal 
geometry and describing the boundary broadening from diffusion, but does not add fundamentally new 
features.  In the last decade, it has become possible to routinely fit Lamm equation solutions of various 
interacting systems to experimental data describing the evolution of macromolecular concentration 
profiles (12,13,15). Although highly useful in some cases (16,17), in practice, unfortunately, the PDE 
approach often leads to an ill-posed data analysis problem, and the results can be susceptible to 
experimental imperfections that affect the shape of the sedimentation boundaries, such as impurities and 
micro-heterogeneity of the macromolecule samples under study (18,19).  Thus, the advantage of the PDE 
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approach over GJT representing a theoretically more complete description of the sedimentation boundary 
shape does, in practice, not necessarily translate to more (or at least reliable) information that could be 
extracted from experimental data.  Also, it does not add to a basic understanding of the phenomenology 
encountered in the co-sedimentation of reactive systems. 

Modern methods to analyze SV data frequently utilize sedimentation coefficient distributions as a basis 
for further quantitative interpretation (19-22) (Figure 1 Bottom).  Deconvolution techniques to separate 
the effect of diffusion and sedimentation of heterogeneous mixtures are usually applied (23-25), providing 
sedimentation coefficient distributions c(s) with high resolution and sensitivity, and this approach has 
been combined with spectral deconvolution for the analysis of multi-component mixtures (26).  An 
example for c(s) distributions representing the boundary systems obtained at a range of loading 
concentrations is shown in Figure 2.  In the case of rapidly reversible complex formation, even though the 
peak sedimentation coefficients are recognized to represent features of the reaction boundary from the 
interacting systems rather than physical species, the sedimentation coefficient distributions allow 
determining average s-values, signal amplitudes, and composition of the complete system of boundaries.  
The concentration dependence of these features represents binding isotherms that condense the 
experimental data to their most reliable and precise aspects (19-21).  Unfortunately, for rapidly interacting 
systems more complicated than two-component two-site binding processes, no practical and general 
framework for the quantitative analysis of these binding isotherms is currently available, except for the 
isotherms of overall signal-average sedimentation coefficient (sw) that do not utilize the rich information 
from the multi-modal boundary structure. 

Perhaps surprisingly, there are still many basic open questions about the sedimentation boundary patterns 
exhibited by rapidly reversible systems – even for simple bimolecular reactions.  Open problems of 
practical relevance include, for example, the properties of the transition point where the undisturbed 
boundary switches its composition and its s-value changes from that of one free component to that of the 
other free component.  Such changes are commonly experimentally observed and shown in the literature 
(but remain un- or even mis-interpreted, see below).  It would be useful to know the relationship of the 
exact transition point with KD of the reaction, s-values of all species, and/or the reaction stoichiometry.  
Similarly unknown are relationships for the choice of experimental concentrations that lead to reaction 
boundaries with composition or s-value close to that of the complex, which could aid in the design of 
experiments for characterizing the stoichiometry and hydrodynamic shape of the macromolecular 
complex.  Finally, for small molecule interactions with large complexes, it is a non-trivial question to 
what extent the slow, undisturbed boundary can be taken as an approximate measure of the free pool of 
unreacted small molecules.  This question can arise, for example, in fibrillar structures in equilibrium with 
free monomers (27,28). 

Since GJT and PDE are computationally intensive iterative approaches that make predictions only for 
given parameter combinations, the systematic exploration of the parameter space to answer these 
questions would be very cumbersome, and is indeed still missing.  Further, no knowledge of general 
principles may be gained from this approach.  For example, even if the parameter space would be 
sufficiently sampled to determine the exact location by trial and error of the transition points of the 
undisturbed boundary, this would not reveal how sedimentation parameters relate to this point.  It is a 
fundamental drawback of both the GJT and PDE approaches that they do not provide satisfactory insight 
into the physical principles of reactive co-transport beyond those establishing the basic partial differential 
equations.  This is also apparent when considering parameter combinations that produce anomalous, 
seemingly counter-intuitive transport patterns such as those described above, which one could argue 
remained unexplained (even though computationally and experimentally confirmed) since their discovery 
in the 1950s.  This has impeded progress in this field.   

In the present work, we report new solutions to the transport equations for rapidly reacting systems, in a 
diffusion-free picture, that describe the average sedimentation coefficients and the composition of all 



5 
 

boundaries with simple analytical expressions.  This allows predicting the sedimentation behavior across 
the entire parameter space, and leads to a physically intuitive picture of the reactive co-migration in the 
form of an ‘effective particle’ of the sedimenting system. 

 

Theory 

Let us consider components A and B at total loading concentrations cAtot  and cBtot reversibly forming a 
complex AB with local species concentrations cA, cB, and cAB, respectively, following mass action law cAB 
= KcAcB with the equilibrium constant K locally and at all times.  Without loss of generality we designate 
A and B such that their sedimentation coefficients obey sA ≤ sB.  We assume the complex to sediment 
faster than either free species.  We utilize the knowledge that there are at most two boundaries, and that 
either A exclusively supplies the undisturbed boundary and B is entirely engulfed in the reaction 
boundary, denoted as BڮሺA), or that, vice versa, B exclusively supplies the undisturbed boundary and A 
is entirely within the reaction boundary, denoted as AڮሺB).   

The sedimentation behavior of an interacting system is generally described by the multi-component 
Lamm equation (8).  In the conventional approximation of rectangular geometry with constant force, the 
sedimentation coefficients s are replaced with linear velocities v, and in the limit of vanishing diffusion 
(which is equivalent to the classical limiting case of infinite time (2)), it takes the form 

k k
k k

c c
v q

t r

∂ ∂
+ =

∂ ∂
           (Eq. 1) 

(for all species k, with the reaction fluxes qk such that qA=qB= െqAB).  This system is the subject of 
Gilbert-Jenkins theory.  The iterative algorithm by Gilbert & Gilbert (29) calculates the magnitude and 
ratio of infinitesimal fluxes of A and B co-sedimenting at a given velocity v’, and thereby describes the 
polydispersity of the reaction boundary ˆdc ds  and the asymptotic boundary shape at infinite time.  It also 

predicts the undisturbed boundary formed by the material left behind once one of the binding partners is 
exhausted.   

Our present goal is to achieve an integral description of the reaction boundaries that describes the overall 
mass balance and arrives at an average velocity of the reaction boundary.  In analogy to the mass balance 
considerations that lead to the definition of the weighted-average s-value, such an average velocity is 
independent of the shape of the reaction boundary, and invariant in the presence of diffusion.  This 
motivates an ansatz using Heaviside step-functions,  

,( , ) ( ) ( )k k u k k A Bc r t c H r v t c H r v t= − + −

           

 (Eq. 2) 

, with the first term consisting of the free species in the undisturbed boundary with the amplitudes and 
migration velocities of either cA,u and vA, or cB,u and vB, respectively, and the second term reflecting 
species concentrations Ac , Bc , and cAB co-migrating with the reaction boundary at the velocity vAڮB.  
After insertion into (Eq. 1) and executing the derivatives with the help of Dirac δ-functions, the collection 
of terms leads to a system of algebraic equations.   

For BڮሺA), when A supplies the undisturbed boundary, we obtain the identities 
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       (Eq. 3) 

In addition to the reaction boundary velocity vBڮሺAሻ, this allows us to determine the amount of free A co-
sedimenting in the reaction boundary   

  
( )

( ) ( )
A B AB B

A
B A A AB A

Kc c v v
c

v v Kc v v

−
=

− + −
       (Eq. 4) 

We note that the fraction of co-sedimenting free A increases with the concentration of B, and will 
comprise all of A at a critical concentration cB

*  

( ) ( )
( )

( )
A AB A B A

B A
AB B

Kc v v v v
c c

K v v
∗ − + −

=
−

        (Eq. 5) 

, and as a consequence, the case Bڮ(A) that presumes A to supply the undisturbed boundary ceases to 
exist when cB > cB

*.   

Equations symmetrical to (Eq. 3), (Eq. 4), and (Eq. 5) are obtained for the case AڮሺB), leading to the 
velocity vAڮሺBሻ and the concentration of co-sedimenting B, Bc .  Further, analogously to (Eq. 5), a critical 
concentration cA

*(cB) is obtained which limits the possibility for Aڮ(B) to cA < cA
*.  Importantly, the 

critical points where the case Bڮ(A) and the case Aڮ(B) cease to exist are the same, as can be 
demonstrated easiest by showing that cA

*(cB
*(cA)=cA. Thus, B will supply the undisturbed boundary for cB 

> cB
*, A will supply the undisturbed boundary for cB < cB

*, and there will be no undisturbed boundary at 
cB = cB

*.  Outside this point, the undisturbed boundary is formed by cundist = cXtot െ Xc െ KcAcB   and   
vundist = vX, with X denoting B for cB > cB

*, or A for cB < cB
*.   

We can summarize the velocity of the reaction boundary as 

( ) ( ) for ( )

( ) ( ) else

A A A B AB A A B B B A

A B

B B A B AB B A B

c v c c Kv c c c K c c c
v

c v c c Kv c c c K

∗⎧⎪ + + >⎪⎪⎪= ⎨⎪⎪ + +⎪⎪⎩

     (Eq. 6) 

.  We can also readily determine the stoichiometry of total A: total B in the reaction boundary, which may 
be measured in multi-signal experiments, as  

( ) 1
1 ( ) ( ) for ( )

1 1 ( ) ( ) else

B A B AB B B B A

A B

A AB A B A

v v Kc v v c c c

R

Kc v v v v

∗

−

⎧⎪ − − − >⎪⎪⎪= ⎨⎪⎪ − + − −⎪⎪⎩

     (Eq. 7) 

The transition point is loosely reminiscent of a first-order phase transition, exhibiting a continuous 
transition of the velocity and the composition of the reaction boundary.   

We refer to this approach as ‘effective particle theory’ (EPT).  It is straightforward to apply EPT to more 
complex reactions with higher stoichiometry. For example, for the case of multiple complexes AB, A2B, 
…, ANB in rapid equilibrium linked by equilibrium constants Ki , the phase transition is at 
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, and the reaction boundary exhibits an average velocity of  
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0 0
1 1

for ( )

else

N N
i i

A A AiB i B A A i B A B B A
i i

A B
N N

i i
B B AiB i B i B A

i i

v c iv K c c c iK c c c c c

v

v c v K b a c K c c

∗

= =

= =

⎧⎛ ⎞ ⎛ ⎞⎪ ⎟ ⎟⎜ ⎜⎪ ⎟ ⎟⎜ ⎜⎪ + + >⎟ ⎟⎜ ⎜⎪ ⎟ ⎟⎜ ⎜⎪ ⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠⎪⎪= ⎨⎪ ⎛ ⎞ ⎛ ⎞⎪ ⎟ ⎟⎪ ⎜ ⎜⎟ ⎟⎪ ⎜ ⎜+ +⎟ ⎟⎪ ⎜ ⎜⎟ ⎟⎪ ⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠⎪⎩

∑ ∑

∑ ∑

   (Eq. 9) 

.   

 

Results 

A physical picture of the co-migration of interacting molecules can be obtained from the inspection of 
(Eq. 3): it equates the population average velocity of all species co-sedimenting in the reaction boundary, 
which, following ergodic theory, also corresponds to the time-average velocity of all molecules.  Thus, a 
sufficient condition for the prediction of the boundary patterns is that the time-average velocity of all 
molecules in the reaction boundary must match.  This leads to a scheme for the association/dissociation 
events with interchanging binding partners coupled to migration as shown in Figure 3, animated in 
movies S1 - S3 of the Supporting Information.  With regard to its sedimentation, we can consider such a 
coupled system to behave like an ‘effective particle’ with velocity sAڮB and composition RAڮB predicted 
by (Eq. 6) and (Eq. 7), respectively.     

This picture naturally explains the occurrence of a single reaction boundary that sediments at a velocity 
that is neither that of free A, free B, or the complex, with molar ratio unequal to the stoichiometry of the 
reaction.  An immediate consequence is the previously unrecognized rule that all reaction boundaries 
must exhibit a composition RAڮB less than unity, consistent with Eq. 7:  Since the free state of A has a 
lower velocity than free B, the fractional time a molecule A spends in the free state has to be short, in 
order not to violate the principle that the average velocities of A and B must match. 

We compared the predictions of EPT for the average s-values, boundary composition, and fractional 
amplitude of the undisturbed boundary with the values determined by GJT after numerical integration of 
the polydisperse asymptotic boundary.  To this end, we comprehensively sampled the parameter space of 
loading concentrations {cAtot, cBtot} along many different trajectories (Figure 4 and S4 – S7 in the 
Supporting Information).  Overall, there is excellent qualitative agreement in describing all the hallmarks 
of the reacting system.  Quantitatively, the agreement is close to the usual experimental precision, for the 
data shown in Figure 4 exhibiting root-mean-square deviations in sAڮB of 0.015 S, in RAڮB of 2.0%, and in 
cundist/cXtot of 5.3 %.  The largest deviations can be discerned where the dispersion of the GJT boundary is 
highest, which occurs close to the phase transition line.   

The lower Panel of Figure 4 shows the phase transition line determined from iteratively sampling GJT 
(black dotted lines) and our analytical prediction (solid lines).  In addition to the results for the system of 
Figure 1 (red), equivalent data are presented for systems with more similar sized binding partners (sA ൎ 
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sB) in green, and more dissimilar binding partners (sA ا sB) in blue.  EPT and GJT agree very well, again 
exhibiting the largest deviations in the region where we found the strongest polydispersity of the GJT 
boundary.   

Next, we studied in more detail the phase transition line.  Its asymmetry is remarkable.  Only in the limit 
of concentrations high above the dissociation equilibrium constant KD does it coincide with the equimolar 
line. At low concentrations of A, the transition approaches a constant value  

( ) ( ),minBtot D B A AB Bc K s s s s∗ = − −          (Eq. 10) 

For small ligands binding to large macromolecules (sB – sA ب sAB – sB), the critical concentration of B 
required for the phase transition is far  above  KD, whereas for similar sized molecules (sA ൎ sB) the 
threshold is very low.  Surprisingly, at low concentration of A even a very large molar excess of B may 
not be able push A entirely into the reaction boundary.  The reason for this behavior can be sought in the 
requirement that sAڮB > sB, which follows from Eqs. 5 and 6, as well as from the physical picture of 
Figure 3: At low loading concentrations, the fractional population of A being ligated is not sufficiently 
high to elevate the time-average velocity of all A above that of free B.  Therefore, A must partition into 
the undisturbed and the fast-moving reaction boundary, even at very low concentrations.  Inspection of 
Eq. 7 shows that at the transition point, the stoichiometry A:B approaches zero for very low 
concentrations of A.  This is possible, because in this limit, sAڮB approaches sB, such that the lifetime of 
the free state of B can be very long.   

An overview of the complete set of boundary properties for different model systems based on Eqs. 5 – 7 
is shown in Figure 5 (and can be produced for any parameter combinations in the public domain software 
SEDPHAT).  They can be used as an aid in the design of SV experiments.  For example, determining the 
stoichiometry of a reaction is a frequent – and often the most important – goal of SV experiments.  For 
the system in Figure 1, when keeping constant cAtot = KD at increasing concentrations of B, the phase 
transition of the undisturbed boundary occurs at cBtot = 2.4 KD .  If the undisturbed boundary is 
misinterpreted to reflect the molar excess of the reaction, the presence of 2:1 or 3:1 complexes may be 
erroneously deduced.  Even with cAtot = 10 KD, the phase transition requires cBtot = 13.4 KD , which would 
still not lead to unambiguous assessment of the correct stoichiometry.  Errors grow strongly with more 
dissimilar binding partners (sB – sA ب sAB – sB), and decrease for binding partners with similar s-values.  

An alternative approach to determine the complex stoichiometry is the measurement of the composition 
of the reaction boundary by multi-signal SV.  Here, it is advantageous to use high total concentrations of 
A in combination with moderate or low total concentrations of B.  (Along lines of constant cAtot, at higher 
concentration of B closer to the phase transition line, free A becomes limiting, consequently leading to 
lower s-values and lower fractional saturation of B in the reaction boundary.)  In the system of Figure 1, 
for example, with cAtot = 10 KD any concentration cBtot < KD will lead to a reaction boundary composition 
of ൎ 0.95, close to the correct stoichiometry (Figure 5 Middle).  Even in the limit of very small ligands, 
(sAB–sA)/(sB–sA) ൎ 1, the same concentration range will always lead to a boundary composition > 0.90, and 
this value approaches 1.0 in the limit of similar sized A and B, when (sAB–sA)/(sB–sA) ՜ ∞.  

 

Discussion 

The goal of the present work was to develop a simple physical picture of co-migration that occurs for 
rapidly reacting systems in the gravitational field, and to obtain physical insights in the relationships of 
concentration, sedimentation, and reaction parameters which govern the sedimentation behavior of the 
system, yet remain obscure when relying on numerical solutions of the Lamm PDE.  
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We found that this can be achieved with generalized functions that can be shown to solve the same set of 
partial differential equations subject previously to GJT.  In contrast to GJT, which describes asymptotic 
shapes of the reaction boundary in terms of differential velocity distributions, EPT has a different focus 
and only aims to describe the overall fluxes in the plateau region. This is achieved by limiting the 
description of the reaction boundary to the approximation with a mono-disperse step-function, which can 
be regarded as an equivalent boundary position moving with a velocity consistent with the overall mass 
balance of the reaction boundary (invariant to the presence of diffusion). In this way, EPT naturally leads 
to the time-average sedimentation coefficients of all co-sedimenting molecules in the reaction region, and 
the requirement that these time-average sedimentation coefficients must match.  Thus, while not 
describing realistically the boundary shapes, EPT provides, for the first time, simple analytical 
expressions that describe the overall boundary pattern and phase behavior of the system. 

The focus on the average composition and sedimentation velocity of the undisturbed and reaction 
boundary is fully adequate for the information content that can be easily extracted from experimental 
reaction boundaries, for example, with c(s) or other sedimentation coefficient distribution analyses.  Even 
under experimental conditions where we can clearly detect the presence of polydispersity in broad 
reaction boundaries close to the phase transition point, within the typical experimental signal/noise ratio, 
we can reliably quantify only the average properties of the reaction boundary. (Also, it should be noted 
that current differential sedimentation coefficient distributions are typically extracted from experimental 
data representing the complete time-course of sedimentation, and therefore, as shown in (21), radial 
dilution at the later stage of the experiments with sector-shaped geometry has only a trivial impact on the 
results, justifying the application of the constant force and rectangular geometry picture of EPT).  

Conceptually, EPT can clarify features of SV of interacting systems that previously remained rather 
mysterious, such as the ‘mechanism’ of co-migration of free species and complex in a single reaction 
boundary. It also describes previously unrecognized features of reaction boundaries, including the 
discovery of a phase transition line and its limiting values.   

In practice, the overview of the phase behavior can be useful in the design of experiments.  For example, 
the determination of the complex stoichiometry of a rapidly reversible interaction is an important 
application of SV.  A common assumption is that the undisturbed boundary reflects the molar excess over 
the reaction stoichiometry.  In this regard, the location of the phase transition line is a very important 
factor.  For very dissimilar sized molecules, unless very high concentrations can be used (e.g., ب 
10KD(sB–sA)/(sAB–sB) ), misleading transition point stoichiometries may be obtained, or, unexpectedly, 
even no transition line may be encountered at all, irrespective on the molar ratio of loading 
concentrations. In contrast, EPT predicts that the alternative approach of using multi-signal sedimentation 
velocity to probe the composition of the reaction boundary can lead to results correctly reflecting the 
complex stoichiometry even at moderate concentrations, without strong dependence on relative particle 
size. Practical examples for the application of the two approaches and their contrasting results for the 
stoichiometry estimates, can be found in recent studies on the pyruvate dehydrogenase complex (30,31). 

Similarly, the results from EPT may be used, for a given set of interacting macromolecules, to design 
experiments that will lead to reaction boundary velocities close to that of complex, to facilitate 
hydrodynamic modeling and comparison with translational friction coefficients of model structures (32-
34).  Interestingly, these conditions do not completely overlap with those leading to boundary 
composition close to the reaction stoichiometry. 

It is remarkable that the phase diagram of coupled migration and rapid reaction exhibits concentration-
dependent features much sharper than typical non-cooperative binding isotherms (Bottom panel in Figure 
5).  Where the undisturbed boundary vanishes and its constituent switches, a distinct, sharp increase in its 
amplitude occurs along with a discontinuous change in the s -value of the undisturbed boundary.  
Conditions close to or at the transition points may offer unconventional experimental approaches for the 
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determination of binding affinities at low concentrations.  Further studies will show whether this 
concentration regime can be experimentally exploited.  

EPT should also be useful for practical data analysis.  It offers the opportunity for a robust analysis of 
systems that are experimentally not sufficiently homogeneous and/or not sufficiently information rich to 
permit direct fitting with the Lamm PDE of a system of interacting species. Since the PDE approach 
describes each species as being discrete (though interacting), one could argue that a precondition for the 
application of Lamm PDE modeling is that all free components, when studied individually, can be 
described well with a single discrete, non-interacting Lamm equation solution (e.g., that the quality of fit 
with c(s) distribution and with a single non-interacting species model be equivalent). In practice, this is 
rarely the case due to the exquisite sensitivity of SV-AUC to impurities and virtually ubiquitous 
degradation and aggregation products.  Frequently, however, diffusion-deconvoluted sedimentation 
coefficient distributions still allow one to clearly discern the boundary components of the interacting 
system, and determine their composition, amplitudes, and s-values, and the isotherms from the 
concentration-dependence of these quantities can be modeled with expressions from EPT.  While these 
isotherms can, in principle, also be modeled with solutions of GJT (as we have shown previously (19)) 
the application of GJT to systems with a complexity higher than two-site binding has never been 
attempted and seems virtually intractable. EPT, on the other hand, can readily be applied to n-site binding 
processes.  These methods were implemented in the software SEDPHAT for isotherm analysis of 
experimental data. 

Even though we have only developed the theory for two-component mixtures, which can exhibit at most 
two boundaries, it should be possible to apply the same principles to higher-order mixtures. For example, 
three-component mixtures are expected to exhibit three boundaries (one undisturbed, one two-component 
reaction boundary, and one three-component reaction boundary).  These will likely carry correspondingly 
more information-rich phase behavior, potentially providing a unique avenue to gain insight in rapidly 
reversible multi-component mixtures. For such systems, Lamm PDE approaches seem even more 
problematic than for two-component mixtures.  Finally, since EPT is neither implying predictions of the 
detailed boundary shapes, nor of the details of transport, it may be applied equally to the quantitative 
study of rapidly interacting systems in highly non-ideal solvents, for example, how the interaction of 
fluorescently labeled molecules in human serum (35,36) leads to partitioning into undisturbed and 
reaction boundaries.   
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Figure Legends 

FIG. 1. (Top) Concentration profiles calculated from Lamm PDE solutions for species A (3.5 S, green) 
reversibly interacting with B (5 S, blue) to form transient complexes AB (6.5 S, grey), sedimenting at 
60000 rpm. Initially, cAtot(r,t=0) = cBtot(r,t=0) = KD, and shown are ck(r,t) at 5 min (dotted) and t* = 100 
min (solid lines). (Bottom) Experimentally, from the measured total signal cAtot(r,t*) + cBtot(r,t*) could be 
easily determined an apparent velocity distribution g*(s*) ~ dc/dr (dotted line), or the diffusion-
deconvoluted sedimentation coefficient distribution c(s) (23) (dashed line).  The asymptotic boundary 
ˆdc ds  from GJT is shown as light grey bar, and the predictions from EPT are shown as red arrows 

(scaled to represent the relative signal amplitudes, assuming equal signal increments).  
 
FIG. 2  Sedimentation coefficient distributions c(s) representing the boundary patterns of the interacting 
system of Figure 1 at different total loading concentrations.  The vertical lines indicate the s-values of the 
free and complex species.  Top: Dilution series with equimolar concentrations at 0.1 KD (blue), 0.3 KD 
(pink), KD (green), 3 KD (red), 10 KD (cyan).  The c(s) distributions are normalized relative to the total 
loading concentrations.  Bottom:  Titration series of a constant total concentration cAtot = KD of the smaller 
species A with increasing concentrations cBtot of 0.1 KD (blue), 0.3 KD (pink), KD (green), 2.366 KD (red), 
10 KD (cyan).  Distributions are not normalized.  For both panels, sedimentation and reaction parameters 
are as in Figure 1, with signal coefficients of 40,000 M-1cm-1 and 60,000 M-1cm-1 for A and B, 
respectively. 
 
FIG. 3  Cartoon of the effective particle AڮB (encircled in red). Indicated is the fractional time that A 
(green) and B (blue) spend free or in complex (greyed time intervals).  The representation is faithful with 
regard to relative concentrations, velocities, and species lifetimes. Component A spends a smaller fraction 
of time free than B, resulting in a match of their time-average velocities. An animation is shown in the 
Supporting Information S1. 
 

FIG. 4. Comparison between the predictions from GJT and EPT. (Top) Weight-average s -values from 
GJT by integration of the velocity distributions ˆdc ds  (circles) and EPT predictions for sAڮB (red line), 

along trajectories of KcBtot = 1 (left) or KcAtot = 1  (right), for the same model system as in Fig. 1. The 
velocity range of ˆdc ds  predicted by GJT as a function of concentration is indicated as grey area. 

(Middle)  Relative amplitude of the undisturbed boundary cundist/cXtot 
(left ordinate) as predicted from GJT 

(black circles) and EPT (red lines), and stoichiometry of the reaction boundary RAڮB (right ordinate) 
predicted from GJT (blue circles) and predicted by EPT (blue line).  (Bottom) Phase transition line as 
analytically predicted from EPT (solid lines) and determined iteratively by GJT (black dotted lines), 
shown in red for the same system as in Fig. 1, in green for a system where the free species are similar in 
sedimentation coefficient (sA = 4.9 S, sB = 5.0 S, and sAB = 8.5 S), and in blue for a system where A is a 
very small compared to B (sA = 0.5 S, sB = 5.0 S, and sAB = 5.3 S). 
 
FIG. 5. Properties of the reaction boundary AڮB as a function of the total loading concentration of A and 
B, calculated by EPT for the system of Figure 1. (Top) Velocity of the reaction boundary sAڮB  following 
Eq. 6.  (Middle) Composition RAڮB of the reaction boundary following Eq. 7.  (Bottom)  Fractional signal 
of the undisturbed boundary, assuming that both components are globular with equal weight-based 
extinction coefficients. In all plots the line for the phase transition cBtot

*(cAtot) is shown as black dotted 
line, separating the region of Aڮ(B) in the upper left quadrant from Bڮ(A) elsewhere.   
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