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Abstract 

Sedimentation velocity analytical ultracentrifugation (SV) combines relatively high 
hydrodynamic resolution of macromolecular species with the ability to study macromolecular 
interactions, which has great potential for studying dynamically assembled multi-protein 
complexes.  Complicated sedimentation boundary shapes appear in multi-component mixtures 
when the time-scale of the chemical reaction is short relative to the time-scale of sedimentation.  
Although the Lamm partial differential equation (Lamm PDE) rigorously predicts the evolution 
of concentration profiles for  given reaction schemes and parameter sets, this approach is often 
not directly applicable to data analysis due to experimental and sample imperfections, and/or due 
to unknown reaction pathways.  Recently, we have introduced the effective particle theory 
(EPT), which explains quantitatively and in a simple physical picture the sedimentation 
boundary patterns arising in the sedimentation of rapidly interacting systems (Biophys. J.  (2010)  
Vol. 98 Number 9).  However, it does not address the diffusional spread of the reaction boundary 
from the co-sedimentation of interacting macromolecules, which also has been of long-standing 
interest in the theory of SV.  Here, EPT is exploited to approximate the concentration gradients 
during the sedimentation process, and to predict the overall, gradient-average diffusion 
coefficient of the reaction boundary.  The analysis of the heterogeneity of the sedimentation and 
diffusion coefficients across the reaction boundary shows that both are relatively uniform across 
the parameter space.  These results support the application of diffusion-deconvoluting 
sedimentation coefficient distributions c(s) to the analysis of rapidly interacting systems, and 
provides a framework for the quantitative interpretation of the diffusional broadening and the 
apparent molar mass values of the effective sedimenting particle in dynamically associating 
systems.   
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Introduction 

In the last decade, sedimentation velocity analytical ultracentrifugation (SV) has re-emerged as a 
powerful technique for the study of interacting macromolecules.  It has unique potential for the 
detection of size, shape, composition, and thermodynamic equilibrium constants of complexes in 
slow or rapid chemical equilibrium with their free constituent species.  In particular, SV is well-
suited to address the often most difficult problem of establishing the number and stoichiometry 
of multiple co-existing complexes, and to determine the reaction scheme.  At the same time, the 
hydrodynamic and spectral resolution provides the virtue of SV being relatively robust against 
the presence of many kinds of impurities and aggregates.  The technique has been reviewed, for 
example, in (1-5).  

The technique has a long history spanning almost a century of theoretical and practical 
application to protein interactions.  Driven by increased interest in the study of protein 
interactions, the last decade brought many significant advances, especially in the computational 
modeling of SV.  The underlying partial differential equations (PDE) of SV, the Lamm equation, 
can now be solved sufficiently fast and precise so that it can be used for fitting by non-linear 
regression of experimental raw data sets on ordinary laboratory computers.  This brought the 
modern techniques of directly and globally fitting the equations for the 
sedimentation/diffusion/reaction PDE of certain reaction schemes to experimental data (6-9), as 
well as the determination of diffusion deconvoluted, high-resolution sedimentation coefficient 
distributions (10), size-and-shape distributions (11), and multi-signal sedimentation coefficient 
distributions for multi-component systems (12).   

Despite this computational progress, many phenomena have remained less well understood on a 
biophysical level.  As has been pointed out by Gilbert & Jenkins already 50 years ago, systems 
of interconverting species with instantaneous reactions on the time-scale of sedimentation 
migrate very differently from populations of non-interconverting species (13), in ways perhaps 
unexpected and non-intuitive when unfamiliar with the migration of interacting systems (14).  Of 
course, any behavior is captured in the solutions to the partial differential equations of 
sedimentation, but this alone is insufficient to understand the mechanisms of coupled transport.  
It also does not help us to understand rules for how the system parameters relate to each other 
when the system is exhibiting a certain phenomenology.  However, such knowledge is important 
to develop robust experimental designs and methodology for the data analysis, and, in particular, 
to fully exploit the unique potential of SV in the study of multi-component interactions.   

To this end, we have recently introduced the effective particle theory (EPT) that explains, in a 
simple physical picture, the basic rules that govern the formation of sedimentation boundary 
patterns of multi-component mixtures (i.e., the division of the sedimenting system into a slowly 
migrating single-component ‘undisturbed boundary’ and a rapidly migrating ‘reaction boundary’ 
containing a mixture of all species) (15).  EPT highlights, for the first time, the existence of a 
phase transition in parameter space, where the singularity occurs that the entire reacting system 
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sediments in a single boundary, the latter sedimenting with a velocity unequal any of the species’ 
velocities.  Across this phase transition line, the constituent of the slow boundary switches.  EPT 
also describes how the asymmetry of the individual free species’ velocities translates into an 
asymmetry of this phase transition line in the parameter space of loading concentrations.  EPT 
provides simple quantitative expressions for the amplitudes and velocities of all boundary 
components, as well as the phase transition.  This facilitates data analysis approaches based on 
modeling the isotherms of boundary patterns as a function of loading concentration, which 
constitute robust, information-rich binding isotherms (15,16), and enables the extension of this 
approach to more complex interaction schemes.  The experimental observables of SV across the 
parameter space of loading concentrations, as predicted by EPT, as well as the molecular 
mechanism of coupled reaction and sedimentation for given parameters, can be visualized in the 
effective particle explorer tool of the software SEDPHAT (a biophysical data analysis software 
for interacting systems (17)).   

However, with its basis on mass balance considerations across the reaction boundary, EPT is 
only concerned with the sedimentation coefficients and amplitudes of the sedimentation 
boundaries.  It does not address the questions of the detailed boundary shape.  In particular, the 
diffusive properties of the reaction boundaries is an area that has so far remained comparatively 
poorly explored.  Yet, it is of high practical interest, since de-convolution of diffusion affords 
highly increased hydrodynamic resolution.  Again, the basic computational recipe provided by 
the sedimentation/diffusion/reaction PDE equations provides a rigorous predictive tool for the 
evolution of concentration gradients given a certain parameter set, but it does not satisfactorily 
explain the relationships between the observables across the parameter space of loading 
concentrations.  In particular, the set of Lamm PDEs of reacting systems does not define the 
magnitude of the ‘average’ diffusion coefficient of the reaction boundary, as well as the variation 
across the reaction boundary from this average value.   

The ‘constant bath’ approximation, originally developed by Krauss and co-workers (18) and later 
re-discovered by Urbanke, Witte & Curth (19), predicts that reaction boundaries diffuse with a 
single, weight-average diffusion coefficient.  This is consistent with the observation that c(s) 
distribution of non-interacting species (10) can model concentration profiles from reacting 
systems remarkably well (9).  Even though qualitatively the results of the constant bath theory 
are very good, and the accuracy of the predicted sedimentation coefficients is excellent, the 
predictions for the diffusion coefficient are less successful (9).  Further, the constant bath 
approximation cannot be applied well across the whole parameter space of loading 
concentrations (9) due to the neglect of co-sedimentation of both free components in the reaction 
boundary.   

The present work explores a different approach to arrive at an approximate analytical expression 
for the diffusion properties of the reaction boundaries across the entire parameter space.  It is 
physically motivated, and exploits the relationships arising in EPT that are valid for any 
parameter combination to approximate the concentration gradients in the reaction boundary.  We 
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show this compares well with best-fit diffusion coefficients to reaction boundaries from exact 
solutions of the sedimentation/diffusion/reaction PDE.  Finally, the consequences for diffusional 
deconvolution with sedimentation coefficient distribution c(s) and size-and-shape distributions 
are discussed. 

 

Theory 

Let us consider a bimolecular reaction of A + B  AB in instantaneous equilibrium 
characterized by the mass action law cAB = KcAcB with association equilibrium constant K (or 
equilibrium dissociation constant KD = 1/K).  Let us choose the nomenclature of A and B such 
that A is the slower sedimenting species.  The initial loading concentrations of A and B are cAtot,0 
and cBtot,0, respectively.   

Lamm equations  

The propagation of the system after start of centrifugation at the angular velocity ω is given by 
the Lamm PDE, which can be written generally as 

        <1> 

with k denoting the species A, B, and AB, sk and Dk the species’ sedimentation and diffusion 
coefficients, and ck(r,t) the local radial and time-dependent concentration of the species (14).  qk 
denote the reaction fluxes that have the constraint from mass conservation qA = qB = qAB .  The 
absence of hydrodynamic non-ideality (i.e. a concentration-dependence of sk  and Dk is assumed 
throughout.  Eq. <1> can be solved numerically with the software SEDPHAT for given 
parameter sets, but this does not further illuminate the physical processes of sedimentation.  

For rapid self-associating systems, in order to simplify the Lamm PDE and to eliminate the 
reaction fluxes, it is customary to condense all species’ equations into a single PDE in terms of 
total local concentration and concentration-dependent, locally weight-average sedimentation 
coefficient and gradient-average diffusion coefficient, respectively.  It is possible to express the 
Lamm PDE of heterogeneous associations similarly in terms of constituent concentrations 
cAtot(r,t)=cA(r,t)+cAB(r,t) and cBtot(r,t)=cB(r,t)+cAB(r,t) 

  <2> 

with the local weight-average sedimentation and gradient average diffusion coefficients  
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 <3> 

and the symmetrical expressions  
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 <4>  

(A detailed derivation is in the Supporting Material.)  A typical set of concentration gradients 
evolving during the sedimentation of an interacting system is shown in Figure 1A.  The boundary 
pattern exhibits a division into an undisturbed boundary that consists entirely of either free A or 
free B, and the reaction boundary that exhibits coupled migration of all free and complex species 
(13,15).   

Effective Particle Theory 

The propagation of the undisturbed boundary is trivial, except for the question which component 
provides this undisturbed boundary, and the question of the concentration in the undisturbed 
boundary.  In EPT (15), this component is denoted as ‘secondary component’, abbreviated ‘Y’ 
and the component that is not ‘secondary’ is termed ‘dominant’ and abbreviated as ‘X’.  Y is 
equal to A for ,0 ,0Btot Btotc c∗<  , and Y is equal to B for ,0 ,0Btot Btotc c∗> , with the phase transition 
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molecules X and Y being bound or free are equal to their population fractions, and such that the 
time-average velocities of molecules X and Y are equal, assuming a value 

X X AB AB
A B

X AB

c s c s
s

c c

+
=

+
      <7> 

This can be illustrated best in a movie (20).  EPT is only concerned with the total fluxes arising 
from the sedimentation of the reaction boundary and the undisturbed boundary, and the 
concentration profiles are thus approximated as step-functions, as illustrated in Figure 1B.  EPT 
does not make statements regarding the boundary shape or diffusion. 

Diffusion coefficients of the reaction boundary 

If the components are instantaneously linked by mass action law at all times, it should be 
possible to approximate the diffusive broadening of the reaction boundary by a single diffusion 
coefficient of the system, A BD .  We expect that both components contribute to diffusion, and 

that the magnitude of A BD  is weighted by each components fluxes.  Thus, we hypothesize that 
the average diffusion coefficient should take the form of a gradient average 
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We note that exact expressions for DAtot and DBtot are available in Eqs. <3> and <4>.  Their 
evaluation requires knowledge of the concentration gradients Ac r∂ ∂  and Bc r∂ ∂ , similar to 

Eq. <8>.   

We can make use of the knowledge of the concentration differences in EPT to approximate the 
concentration gradients.  As visualized by the dotted lines in Figure 1A, a linear concentration 
increase across a radial range Δr may serve at least as a first approximation.  This leads to 
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One may further use the Svedberg equation to define an ‘apparent molar mass’ of the effective 
particles in the reaction boundary of  

       <10> 
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Sedimentation coefficient distributions 

The sedimentation coefficient distribution c(s) describes the evolution of the experimental signal 
profiles a(r,t) as a superposition of Lamm equation solutions 1( , , , )s M r tχ  of non-interacting 
species, 

1( , ) ( ) ( , ( ), , )a r t c s s M s r t ds≅ χ∫     <11> 

(10), where M(s) is usually calculated as a function of s-value following the power-law 

    ( ) 3/20( ) ( ) , ,
w

M s k f f sρ η≈      <12> 

, and typically fit with the average frictional ratio 0( )
w

f f  as an adjustable fitting parameter (21), 

although other relationships are possible and available in the ultracentrifugal data analysis 
software SEDFIT (17).  

Analogously, the size-and-shape distribution is  

1( , ) ( , ) ( , , , )a r t c s M s M r t dsdMχ≅ ∫      <13> 

, although it is usually calculated in a more convenient form of c(s,f/f0) (11).   

Both Eqs. <11> and <13> are discretized and phrased into a linear least-squares problem for the 
calculation of the distribution.  High-resolution distributions can be calculated conveniently on 
desktop computers, using established computational tools that yield a mathematically well-
defined best-fit solution for this linear least squares fit (22). Since the analysis is ill-posed, it 
must be combined with regularization techniques to avoid detail not warranted by the data.  All 
data analysis was done with the software SEDFIT, using maximum entropy or Tikhonov 
regularization.  1 

 

  

                                                            
1 We note that Eq. <13> can generally not be solved accurately with Demeler’s 2DSA method 
(23), which may be considered a heuristic approach motivated by Eq. <13> , as shown in (22). 
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Results 

The performance of the approximation Eq. <9> was by calculating exact Lamm equation 
solutions via Eq. <1> for a variety of conditions, and by extracting estimates for the diffusion 
coefficients from these boundary profiles.  In the absence of hydrodynamic non-ideality, this can 
be accomplished through fitting the concentration profiles with the c(s) model (see below).   

Broadening of the reaction boundary arises not only from diffusion, but also from the 
heterogeneity of the sedimentation coefficient distribution, as predicted in the asymptotic 
boundaries by Gilbert-Jenkins theory (13).  Even though the range of s-values is very narrow, 
except for conditions close to the phase transition line (15) (see below), the exquisite sensitivity 
of SV to the polydispersity of s-values makes this an important contribution.  The polydispersity 
of the s-values in the reaction boundary can be captured by modeling the concentration profiles 
with a continuous c(s) distribution across the range from approximately sB to sAB.   

Polydispersity results in exponentially time-dependent broadening of the boundary.  This is 
independent of the diffusive, i.e. the t -dependent, component of the reaction boundary 
broadening.  The latter can be extracted by adjusting a signal-average frictional ratio of the c(s) 
distribution to its best-fit value (see below).  The undisturbed boundary is modeled as a discrete 
species with sedimentation parameters of the free component Y predicted from EPT.  For 
conditions where the c(s) peak of the reaction boundary is resolved from the discrete species of 
the undisturbed boundary, integration of c(s) then provides a value for sA B.  Together with sA B , 
the best-fit frictional ratio implies an estimate of the average molecular weight as well as the 
average diffusion coefficient (via the Svedberg equation), which may be taken as estimates 
ofDA B, and MA B, and be compared with the approximations Eqs. <7>, <9>, and <10>, 
respectively.   

The test-system used was that of a 40 kDa, 3.5 S molecule ‘A’ rapidly interacting with a 60 kDa, 
5.0 S molecule ‘B’, to form a 100 kDa, 6.5 S complex.  The sedimentation profiles were 
predicted for a 10 mm solution column at 50,000 rpm, and signals a(r,t) = εAcA(r,t) + εBcB(r,t) + 
εABcAB(r,t) were calculated in 10 min time-intervals, using signal increments that would be 
typical with the interference optical detection for these molecules.  The parameter space of 
loading concentrations was explored along different trajectories of equimolar concentrations and 
titration series of constant A or constant B, respectively.  The results of the simulated 
experiments are shown in Figures 2 and 3, where the circles depict the values derived from the fit 
of the simulated sedimentation data (PDE solution), and the solid lines depict the isotherms 
predicted by Eqs. <7>, <9>, and <10>, respectively.  It should be noted that there is no 
adjustable parameter in the solid lines. 

One basic prediction from the derivation above is that the values for sA B, DA B, and MA B 
should be independent of the species’ signal increments.  This is at variance with the results from 
Gilbert-Jenkins theory that the contributions of the free components A and B to the asymptotic 
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boundaries are not proportional to each other (13).  This dilemma motivates a test of the extent of 
a dependence of the observed diffusion coefficients in the reaction boundary on the species 
signal contributions.     

To this end, different situations were simulated with different assumptions on the species’ signal 
increments, with the results shown in Figure 2.  In red is shown the realistic simulation with 
signal increments for all species as would be observed for refractive-index sensitive interference 
optics in a current Optima XL-I analytical ultracentrifuge.  Green shows the data that are 
obtained when A does not contribute to the signal, solely using contributions of the larger species 
and the complex.  The opposite extreme is simulated in the data shown in black, which 
emphasizes the small species A and B by applying conditions where artificially εAB is set to zero.  
If the individual species were to migrate in the reaction boundary with significantly different 
diffusional spread, the resulting data (red, green, and black circles) would diverge.  However, it 
can be discerned from Figure 2 that the values obtained are quite similar.  Furthermore, the 
values follow closely the prediction of the isotherms Eqs. <7>, <9>, and <10>, respectively.  
DA B is slightly systematically underestimated, however, the deviation is in on the order of 10% 
or better.   

Whether Eq. <9> is of the correct the functional form to provide good approximations for the 
average diffusion coefficients can be explored by variation of the parameters DA, DB, and DAB in 
the simulated Lamm equation solutions.  The values that can be probed are not limited to 
physically reasonable values, but instead may cover extreme or even physically impossible 
values, that solely reflect the mathematical structure of the Lamm PDE solutions in relation to 
Eq. <9>.  The results of this set of simulation experiments is shown in Figure 3.  Data points in 
red recapitulate the results for the simulations under standard conditions as shown in Figure 2.  
Blue circles show the results when A is diffusing much stronger (setting MA  = 10 kDa, at 
unchanged sA  = 3.5 S, MB  = 60 kDa, MAB  = 70 kDa, and otherwise standard parameters), green 
circles show the results when B is diffusing much stronger (setting MB  = 35 kDa, at unchanged 
sB = 5.0 S, MA  = 40 kDa, MAB  = 75 kDa, and otherwise standard parameters), and finally, 
magenta circles show the results when DAB becomes very large (by setting MAB  = 40 kDa, at 
unchanged sAB = 6.5 S, MA  = 40 kDa, MB  = 60 kDa, and otherwise standard parameters).  Again, 
the isotherms predicted by Eqs. <7>, <9>, and <10>, indicated by the solid lines, have no 
adjustable parameters and there is no fit involved.  They are in very good agreement with the 
PDE-derived data, indicating that Eq. <9> captures at least the most essential contributions to the 
diffusive broadening of the reaction boundary. 

With Eq. <10> it is possible to inspect the apparent molar mass values of the reaction boundary 
MA B as a function of loading concentrations.  In particular, it is instructive to compare MA B 
with the molar mass of the complex MAB, and with the weight-average mass of the entire system 
Mw (as it would be measured, for example, in certain sedimentation equilibrium analysis 
models).  The isotherms MA B/MAB(cAtot,0,cBtot,0) and MA B/Mw(cAtot,0,cBtot,0) are shown in Figure 4 
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Panels A and B, respectively.  Not surprisingly, MA B is always between the mass of the 
complex and the weight-average mass of the entire system.  It attains asymptotically the mass of 
the complex for conditions where the reaction is saturated with excess A and/or excess B, in 
parallel with the isotherms of sA B approaching the s-value sAB of the complex (as shown in 
Figure 5 in (15)).  On the other hand, MA B is close to the weight-average mass of all species in 
the loading mixture when the loading concentrations are in the vicinity of the phase transition 
line, where the undisturbed boundary vanishes.  We note that MA B is not equal to the weight-
average molar mass of the material in the reaction boundary, even though the relative difference 
is less than 5% for the particular conditions of Figure 2 (data not shown).   

In addition to the average diffusion coefficient DA B across the reaction boundary, we can ask 
the question how large the local variation of the diffusion coefficient might be, considering that 
the boundary shape will create regions of different gradients (hence different gradient averages).  
After all, the boundaries are not linear, as approximated above.  Some preliminary estimates are 
possible based on the observation that the concentration profiles of all species in the reaction 
boundary take roughly similar shape (for example, in Figure 1A, compare the shapes of the bold 
red and blue lines in the highlighted region).  Even though this is not exactly true, either, it does 
permit an estimate of the range of diffusion coefficients arising at positions in the boundary.  To 
this end, we may apply the parameterization ,0X Xc kc′ =  and 

,0 , ,0 ,( ) ( )Y Y undist Y Y undistc c k c c′− = −  with 0,1k ⎡ ⎤∈ ⎣ ⎦ , which explores, in a rough approximation, 

the regions of decreasing slopes in the trailing end of the reaction boundary.  When inserted into 
Eq. <9>, a limiting value for 0k =  can be found, which provides an estimate for the maximal 
diffusion coefficient ,maxA BD  in the trailing edge of the reaction boundary.  In Figure 5A, this 

information has been presented in the form of the relative change ( ),maxA B A B A BD D D−  as 

a function of loading concentration.  Even though a considerable spread of diffusion coefficients 
between the average value DA B  and the maximum value DA B,max  may be encountered, the 
region of greater than 10% variation (plotted in cyan and warmer colors) extends very narrowly 
along the phase transition line.  For most of the parameter space, the relative variation with this 
estimate appears to be less than 5 %.   

It is interesting to compare this with the relative variation of s-values in the reaction boundary, as 
predicted by the asymptotic boundaries  in Gilbert-Jenkins theory (13)  (denoted as diffusion-free 
velocity distributions ˆdc dv , customarily using the symbol v to denote the constant sedimentation 

velocity in linear geometry).  The relative variation of s in the reaction boundary may be 
assessed by comparing the width and average of the asymptotic velocity distribution predicted by 
Gilbert & Jenkins, i.e. ( )max min GJv v v− where ˆ ˆ( ) ( )GJv v dc dv dv dc dv dv= ∫ ∫  .  This is  

shown in Figure 5B across the parameter space for the same system as Figure 2 and Figure 5A.  
(Similar results are obtained when considering the central second moment instead of the 
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maximum spread, which is approximately a factor two smaller than the maximum spread; data 
not shown).  For the s-values, similar to the D-values, significant polydispersity is encountered 
exclusively in a narrow region close to the phase transition line for concentrations cAtot,0 > KD.   

 

 

Discussion 

The diffusional properties of the reaction boundary formed during the sedimentation of rapidly 
interacting species is a problem of long-standing interest in analytical ultracentrifugation.  Even 
though the Lamm PDE of the interacting system predicts the evolution of the concentration 
profiles of all species, this alone is not completely satisfactory or sufficient for the optimal 
planning and evaluation of SV experiments on rapid protein interactions.   

Current numerical algorithms and abundant computational resources on desktop computers make 
routine direct fitting of Lamm PDE solutions of interacting systems to experimental data possible 
(6-9,24).  However, the overwhelming majority of studies in the literature does not apply this 
approach.  This may be attributed to the high susceptibility of the sedimentation boundaries to 
trace impurities and macromolecular heterogeneity that impede the fit of PDE solutions  (9).  (An 
analogous case is the common difficulty of fitting discrete species models to non-interacting 
mixtures, which is rarely possible, in contrast to the fit of sedimentation coefficient distributions 
c(s) that can account for trace imperfections, which is very successfully applied in the literature 
(25).)  In addition, the process of establishing the reaction scheme by comparing the performance 
of various alternate hypothesized Lamm PDE models would be very cumbersome.  For this 
reason, alternative, more flexible and robust approaches must be developed for the data 
interpretation. 

Maybe most importantly, when the Lamm PDEs are used solely as computational recipes, they 
do not explain the relationship between the physical sedimentation and concentration parameters 
that generate a certain features in the concentration profiles.  Similarly, while they generate near 
exact concentration profiles for the set of underlying simulation parameters, they do not allow 
generalizing observables to different parameter sets, and an overview across the parameter space 
of loading concentrations, for example, would have to be assembled point-by-point.  This 
impedes optimal experimental design and robust data analysis.  A comprehensive overview of 
the observables as a function of Lamm PDE parameters has not yet been reported, and, as a 
consequence, major general features of the phase behavior of rapidly interacting systems in SV 
have been overlooked (see below). 

With regard to the sedimentation boundary patterns exhibited by rapidly reacting bi-molecular 
systems, this problem was addressed recently by EPT (15).  In EPT, physically based rules 
provide simple analytical relationships that describe in excellent approximation the 
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sedimentation boundary patterns of the system across the parameter space.  Briefly, EPT 
distinguishes a ‘dominant component’, which exists exclusively in the reaction boundary, from 
the ‘secondary component’, which provides the undisturbed boundary.  Both components must 
exhibit the same time-average s-value in the reaction boundary.  This condition is sufficient to 
predict quantitatively the composition, amplitudes and s-values of all sedimentation boundaries.   

EPT also revealed an asymmetrically shaped phase transition line in the parameter space, where 
the role of dominant and secondary component switches.  At the phase transition, ‘anomalous’ 
sedimentation behavior exists (in that there is only one single boundary at an s-value 
intermediate to all species), which is naturally explained in EPT by the requirement for all 
molecules to exhibit the same time-average s-value (20).  EPT allows to answer with simple 
analytical relationships non-trivial questions such as: “when does the ‘supernatant’ (i.e. the 
undisturbed boundary) reflect a good approximation of the concentration unbound ligands?” and 
“when does the loading composition at the transition point reflect the complex stoichiometry?”. 

In the present work, we made use of the new analytical predictions from EPT regarding the 
magnitudes of the concentration differences across the boundaries, to explore from a new angle 
the problem of diffusion in the reaction boundary.  When the Lamm PDE is expressed in 
constituent concentrations, gradient average diffusion coefficients naturally appear for each 
component.  They can be approximated by linearized gradients across the boundary, and can be 
further combined into a gradient average diffusion coefficient of all components.  We have 
shown that the resulting analytical expression, which relates all sedimentation, diffusion, and 
concentration parameters, describes well the overall diffusional spread of the reaction boundary, 
DA B across the whole parameter space.  In conjunction with the sedimentation coefficient of the 
reaction boundary from EPT,  s A B, it may be used to define operationally via the Svedberg Eq. 
an apparent molar mass M A B of the effective particle.  Not surprisingly, the resulting values are 
between the weight-average molar mass of the complete system and the molar mass of the 
complex, and are often close to the weight-average molar mass of all species in the reaction 
boundary. 

Further, this approach enables us to obtain a rough estimate of the heterogeneity of the diffusion 
coefficients in the reaction boundary.  Interestingly, it closely mirrors the polydispersity of 
sedimentation coefficients in the (asymptotic) reaction boundary predicted by Gilbert-Jenkins 
theory.  Perhaps contrary to conventional wisdom, both exhibit quite low degrees of 
polydispersity under most conditions, with the exception of a narrow band of concentrations 
close to the phase transition region at concentrations greater than KD.  This may be explained by 
the fact that under conditions far from the phase transition line, the high concentration of the 
undisturbed boundary leads to an offset of concentrations of the secondary component across the 
reaction boundary.  This greatly diminishes the range of fractional saturation of the dominant 
component, which governs the polydispersity of both s-values and D-values.  We believe it is 
essentially this phenomenon that was already captured in the constant bath approximation for the 
special case of very dissimilar sized molecules at conditions of excess small binding partner (9), 
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and led there to the perhaps surprising conclusion that the evolution of the reaction boundary 
may be approximated rather well with a single sedimentation and a single diffusion coefficient.   

To illustrate the performance of this and other data analysis models, we have simulated examples 
for Lamm PDE solutions with different degree of expected polydispersity.  Figure S1 
(Supporting Material) shows data under condition of equimolar cAtot  = cBtot  = 0.2KD , an example 
for conditions where heterogeneity should only be a few percent; Figure S2 (Supporting 
Material) shows conditions of cAtot  = cBtot  = KD, which is an intermediate case; and Figure S3 
(Supporting Material) shows data for cBtot = 3 KD and cAtot  = 1.5 KD at the phase transition line 
by EPT in the region of relatively strong polydispersity.   

For all cases, the root-mean-square deviation (rmsd) of a two discrete species model (one species 
for the undisturbed and one for the reaction boundary) is ~ 2% or less.  However, the D-values 
for the reaction boundaries, and implicitly the M-values, are strongly affected by the 
polydispersity.  This is not surprising, given the well-known susceptibility of the boundary 
spread to heterogeneity.  Obviously, any imperfection that real data may exhibit would further 
bias the best-fit values from such a discrete model.  

Arguably the most important consequence of the reaction boundaries exhibiting ‘normal’ and 
relatively homogeneous diffusion properties is the possibility of diffusional deconvolution.  The 
study of boundary s-values and their isotherms does not rely on boundary shapes, but instead 
relies only on the mass transport accompanying the sedimentation boundaries.  This mass 
transport can be measured in the plateau region, and relates to the integral over the reaction 
boundaries, rather than their shape (15,26,27).  Nevertheless, the diffusional deconvolution is 
often a crucial advantage in identifying the boundary components and resolving signal 
contributions from impurities and aggregates. 

Deconvolution of diffusion can be achieved, for example, by approximating the sedimentation 
signal as a superposition of Lamm PDE solutions of non-interacting species with a continuous 
distribution of s-values and D-values.   In the c(s) method, the two are linked by a scaling law 
D(s) with an adjustable parameter, typically using the average frictional ratio f/f0 (10,21).  
Empirically, many applications of SV to interacting systems in the literature have already 
illustrated that the diffusional deconvolution afforded by the c(s) sedimentation coefficient 
distribution works very well also when applied to sedimentation data of rapidly reacting systems, 
and can yield remarkably high quality of fits (25).  This can be understood considering that over 
the small range of s-values and D-values encountered in the reaction boundary, the exact scale 
relationship D(s) is not very important.  We note that the apparent frictional ratio f/f0 implied by 
a literal interpretation of DA B and MA B , as if they were molecular parameters, is not physically 
meaningful, and assumes slightly smaller values than those of the free and complex species.  
(For this reason, a c(s) approach where the s-axis is segmented with different f/f0-values 
attributed to different regions, may be warranted to account separately for the undisturbed and 
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possibly other clearly visible boundaries; a variety of such models are implemented in SEDFIT 
and SEDPHAT.) 

In all cases of Figures S1 – S3, the fit with c(s) in the standard form, with an adjustable frictional 
ratio parameter, is very good although not perfect.  With values of ~ 1% or better, the rmsd is 
approximately a factor two better than a discrete model.  Due to the ill-posed nature of the 
distribution analysis, the sedimentation coefficient distribution does not exactly follow the 
asymptotic boundary shapes predicted by Gilbert-Jenkins theory (shown as blue area patches), 
but they were shown to be highly consistent when using Bayesian regularization (28).  Close to 
the phase transition, even the standard maximum entropy regularization can lead to the 
qualitatively correct bimodal reaction boundary shape.  As already shown in Figure 3, the 
implicit c(M)-values of the reaction boundary peaks (using the conversion of c(s) to c(M) on the 
basis of a fitted f/f0 parameter of the reaction boundary) follow closely the expected values of 
Eqs. <9> and <10>.   

The size-and-shape distribution, most conveniently expressed as c(s,f/f0), promises an even more 
detailed analysis accounting for polydispersity in both s and D.  However, additional peaks arise 
at s-values and f/f0- values that are not predicted by the theory (Panels D of Figures S1 – S3).  
The rmsd is improved by another factor of two relative to the c(s) analysis, but the additional 
flexibility of the size-and-shape distribution model seems to extract features more detailed than 
warranted by the quality of the approximations above for rapidly interacting systems.  These 
features are well-defined, but other than the integrals over the undisturbed and reaction boundary 
features being measures of the respectively mass balance, and the resulting relationship to the 
overall weight-average s-value sw and the average s-value of the reaction boundary sA B, they 
currently do not appear to be usefully interpretable. 

In conclusion, diffusional deconvolution and analysis of the reaction boundary spread appears to 
be conducted best with the c(s) method.  The present work sheds further light on the relationship 
of the sedimentation coefficient distributions with the theoretically expected asymptotic 
boundaries and EPT, and clarifies the meaning of the M-values encountered with the reaction 
boundaries in the transformation of c(s) to c(M).  Since the spread of the sedimentation 
coefficient distribution is generally small, there will be little influence from using different 
scaling laws in c(s), as long as they have in some form an adjustable parameter for the magnitude 
of diffusion.  

Conceptually, it should be possible to fit isotherms of Mapp-values extracted from the reaction 
boundary of experimental data of rapid interacting multi-component systems to the theoretical 
expressions of MA B(cAtot,cBtot) based on Eqs. <9> and <10> to analyze binding constants.  This 
would give an additional isotherm data set with independent information that could be fit 
globally with appropriate interaction models, in conjunction with the isotherm of sA B(cAtot,cBtot), 
sw(cAtot,cBtot), and the boundary amplitudes aundist(cAtot,cBtot)  and areact(cAtot,cBtot) introduced 
previously (16) and implemented in SEDPHAT.  However, at this point it seems that the 
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generally very high precision of s-values and the robustness of measuring the amplitudes of the 
multi-modal boundaries would provide superior information, and maybe not too much might be 
gained in terms of further diminishing the uncertainty of the derived estimate of the binding 
constant.   

Another useful aspect of the framework presented here is that it can support important qualitative 
conclusions about the nature of the reaction.  Knowing, for example, that the MA B -value of the 
reaction boundary is very close to the complex molar mass under conditions of 10-fold excess of 
cAtot or cBtot over KD (Figure 4) may provide an indicator for the complex stoichiometry.  The 
theoretical approach presented here should be straightforward to generalize to multi-site binding, 
similar to the constant bath theory and EPT.   
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Figure Legends: 

Figure 1:  Schematic representation of the concentration gradients in the reaction boundary.  
Panel A: Concentration profiles of free A (100 kDa, 7 S, red), free B (200 kDa, 10 S, blue) and 
complex (13 S, black) species during the sedimentation of the interacting system A + B ↔ AB in 

the limit of instantaneous reaction, for the conditions at equimolar loading concentrations at KD 
shown in (9).  For clarity, only the concentration profiles from time-points 300 sec and 1,500 sec 
(thin lines) and 3,000 sec (bold lines) are superimposed.  The vertical dashed lines and the range 
highlighted in red indicate the radial range that covers 10 – 90 % of the reaction boundary at 
3,000 sec.  The dotted diagonal lines are linear approximations of the gradients in the reaction 
boundary.  Panel B:  Schematics of the boundary structure described in EPT, with the division of 
the secondary component into the undisturbed boundary with concentration cY,undist  and the co-
sedimenting free fraction cY,co, as well as the concentration of the free species of the dominant 
component cX  and the complex cAB in the reaction boundary.  All quantities cY,undist  , cY,co, cX  , 
and cAB , as well as the question which component plays the role of dominant and secondary 
component X and Y are analytically predicted in EPT as a function of loading concentration, 
equilibrium constant, and all species s-values.  We may assign a finite boundary width Δr to the 
reaction boundary, and approximate it as a constant gradient.    

 

Figure 2:  Testing the observed diffusional spread of the reaction boundary for a dependence on 
the detection of different species.  Shown here are diffusion coefficient DA B  (top row), 
sedimentation sA B  (middle row), and apparent molar mass MA B  (bottom row), observed in the 
reaction boundary (circles), in comparison with the corresponding predictions Eq. <7>, <9>, and 
<10>, respectively (solid lines). To determine the data points for the reaction boundary 
parameters, exact Lamm PDE solutions were calculated for a molecule A of 40 kDa, 3.5 S 
rapidly interacting with a molecule B of 60 kDa, 5.0 S to form a 100 kDa, 6.5 S complex, 
sedimenting at 50,000 rpm in a 10 mm solution column, for equimolar dilution series (left 
column), titration of A with varying B (middle column), and titration of B with varying A (right 
column).  The signal profiles were fitted (excluding the back-diffusion region) with a 
combination of a Lamm equation solution for a discrete non-interacting species describing the 
undisturbed boundary and a c(s) distribution describing the reaction boundary. Where the c(s) 
peak could be well-resolved from the discrete species, it was integrated to determine the average 
diffusion coefficient DA B , sedimentation coefficient sA B, and apparent molar mass values 
MA B.  Shown in red are simulations using extinction coefficients that would be realistic for 
interference optical detection (red: εA = 110,000 fringes M-1cm-1, εB = 165,000 fringes M-1cm-

1, and εAB = 275,000 fringes M-1cm-1).  In green are shown data obtained from simulations with 
invisible A, as may be possible in the selective absorbance optical system (green:  εA = 0, εB = 
165,000 OD M-1cm-1, and εAB = εB).  In black is shown an unphysical simulation of a system 
with invisible complex (black: εA = 110,000 fringes M-1cm-1, εB = 165,000 OD M-1cm-1, and 
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εAB =  0).  The theoretical isotherms are independent of the species’ signal increments, and have 
no adjustable parameters. 

 

Figure 3:  Probing the diffusive properties of the reaction boundary for different systems.  The 
presentation is analogous to Figure 2: the circles indicate the values extracted via c(s) from the 
Lamm PDE solutions (using standard interference optical signal increments of εA = 110,000 
fringes M-1cm-1, εB = 165,000 fringes M-1cm-1, and εAB = 275,000 fringes M-1cm-1), and the 
solid lines are the isotherms predicted by Eq. <7>, <9>, and <10> for diffusion coefficient DA B  
(top row), sedimentation sA B  (middle row), and apparent molar mass MA B  (bottom row), 
respectively.  In red are shown the results for the standard conditions for a molecule A of 40 
kDa, 3.5 S rapidly interacting with a molecule B of 60 kDa, 5.0 S to form a 100 kDa, 6.5 S 
complex.  Blue, green, and magenta depict analogous simulations under conditions that are 
unphysical, but probe extreme values for species’ diffusion coefficients:  a 10 kDa molecule A 
(blue); a 35 kDa molecule B (green), and a 40 kDa complex (magenta).  

 

Figure 4:  Isotherms of the apparent molar mass MA B in the parameter space of total loading 
concentrations, as predicted by Eq. <10>.  Shown are the ratios MA B/MAB(cAtot,0,cBtot,0) (Panel A) 
and MA B/Mw(cAtot,0,cBtot,0) (Panel B), for the system of Figure 2, in a contour plot with the color 
temperature scale as indicated on the right.  The phase transition line of the sedimenting system 
is indicated as black dashed line. 

 

Figure 5:  Polydispersity of the reaction boundary.  Panel A: Estimate for the variation of the 
diffusion coefficient across the reaction boundary, as a function of loading concentration.  
Shown are values of ( ),maxA B A B A BD D D−  using the color temperature scale on the right, 

where ,maxA BD  is estimated for the trailing edge of the reaction boundary.  High values > 0.1 

are located in a very narrow band along the phase transition line (shown as dashed line) for 
concentrations cA > KD. Panel B: Polydispersity of the sedimentation coefficients based on the 
asymptotic boundaries ˆdc dv  from Gilbert-Jenkins theory.  Plotted are the relative width 

( )max min GJv v v−  with ˆ ˆ( ) ( )GJv v dc dv dv dc dv dv= ∫ ∫ , where ˆdc dv  was calculated with the 

numerical method described by Gilbert & Gilbert (29), using a division of 10,000 concentration 
values, and maxv  and minv  are the upper and lower limit of s -values for which  > 0.  
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